Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Virol ; 98(2): e0157123, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206036

RESUMO

In pandemic scenarios involving novel human pathogenic viruses, it is highly desirable that vaccines induce strong neutralizing antibodies as quickly as possible. However, current vaccine strategies require multiple immunization doses to produce high titers of neutralizing antibodies and are poorly protective after a single vaccination. We therefore wished to design a vaccine candidate that would induce increased protective immune responses following the first vaccine dose. We hypothesized that antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein could be increased by drawing upon immunity to a previous infection. We generated a fusion protein containing the influenza H1N1 PR8 virus nucleoprotein (NP) and the SARS-CoV-2 spike RBD. Mice with or without preexisting immunity to PR8 were then vaccinated with NP/RBD. We observed significantly increased SARS-CoV-2 neutralizing antibodies in mice with PR8 immunity compared to mice without preexisting PR8 immunity. Vaccination with NP/RBD protected mice from SARS-CoV-2-induced morbidity and mortality after a single dose. Additionally, we compared SARS-CoV-2 virus titers in the lungs and nasal turbinates 4 days post-challenge of mice vaccinated with NP/RBD. SARS-CoV-2 virus was detectable in the lungs and nasal turbinate of mice without preexisting PR8 immunity, while SARS-CoV-2 virus was completely undetectable in mice with preexisting PR8 immunity. We also found that CD4-positive T cells in mice with preexisting immunity to PR8 play an essential role in producing the increased antibody response against RBD. This vaccine strategy potentially can be modified to target other pathogens of concern and offers extra value in future pandemic scenarios.IMPORTANCEIncreased globalization and changes in human interactions with wild animals has increased the likelihood of the emergence of novel viruses with pandemic potential. Vaccines can be effective in preventing severe disease caused by pandemic viruses. However, it takes time to develop protective immunity via prime-boost vaccination. More effective vaccine designs should quickly induce protective immunity. We propose leveraging preexisting immunity to a different pathogen to boost protection against emerging viruses. We targeted SARS-CoV-2 as a representative pandemic virus and generated a fusion protein vaccine that combines the nucleoprotein from influenza A virus and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Our vaccine design significantly increased the production of RBD-specific antibodies in mice that had previously been exposed to influenza virus, compared to those without previous exposure. This enhanced immunity reduced SARS-CoV-2 replication in mice. Our results offer a vaccine design that could be valuable in a future pandemic setting.


Assuntos
Vacinas contra COVID-19 , Vacinas contra Influenza , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/imunologia , COVID-19/prevenção & controle , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/imunologia , Nucleoproteínas , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle
2.
Mol Ther ; 30(5): 1926-1940, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123065

RESUMO

The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolution has resulted in many variants, contributing to the striking drop in vaccine efficacy and necessitating the development of next-generation vaccines to tackle antigenic diversity. Herein we developed a multivalent Semliki Forest virus replicon-based mRNA vaccine targeting the receptor binding domain (RBD), heptad repeat domain (HR), membrane protein (M), and epitopes of non-structural protein 13 (nsp13) of SARS-CoV-2. The bacteria-mediated gene delivery offers the rapid production of large quantities of vaccine at a highly economical scale and notably allows needle-free mass vaccination. Favorable T-helper (Th) 1-dominated potent antibody and cellular immune responses were detected in the immunized mice. Further, immunization induced strong cross-protective neutralizing antibodies (NAbs) against the B.1.617.2 delta variant (clade G). We recorded a difference in induction of immunoglobulin (Ig) A response by the immunization route, with the oral route eliciting a strong mucosal secretory IgA (sIgA) response, which possibly has contributed to the enhanced protection conferred by oral immunization. Hamsters immunized orally were completely protected against viral replication in the lungs and the nasal cavity. Importantly, the vaccine protected the hamsters against SARS-CoV-2-induced pneumonia. The study provides proof-of-principle findings for the development of a feasible and efficacious oral mRNA vaccine against SARS-CoV-2 and its variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Bactérias , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Cricetinae , Humanos , Camundongos , Replicon , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Vacinas de mRNA
3.
Mol Ther ; 30(5): 1994-2004, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007757

RESUMO

Adeno-associated virus (AAV)-mediated gene delivery holds great promise for gene therapy. However, the non-invasive delivery of AAV for lung tissues has not been adequately established. Here, we revealed that the intratracheal administration of an appropriate amount of AAV2/8 predominantly targets lung tissue. AAV-mediated gene delivery that we used in this study induced the expression of the desired protein in lung parenchymal cells, including alveolar type II cells. We harnessed the technique to develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-susceptible mice. Three kinds of immune function-relevant gene knockout (KO) mice were transduced with AAV encoding human angiotensin-converting enzyme 2 (hACE2) and then injected with SARS-CoV-2. Among these mice, type I interferon receptor (IFNAR) KO mice showed increased viral titer in the lungs compared to that in the other KO mice. Moreover, nucleocapsid protein of SARS-CoV-2 and multiple lesions in the trachea and lung were observed in AAV-hACE2-transduced, SARS-CoV-2-infected IFNAR KO mice, indicating the involvement of type I interferon signaling in the protection of SARS-CoV-2. In this study, we demonstrate the ease and rapidness of the intratracheal administration of AAV for targeting lung tissue in mice, and this can be used to study diverse pulmonary diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/terapia , Dependovirus/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Pulmão/patologia , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética
4.
BMC Vet Res ; 19(1): 158, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710323

RESUMO

BACKGROUND: Infectious diseases transmitted by wild animals are major threats to public health. This study aimed to investigate the potential of rescued wild animals that died of unknown causes as reservoirs of infectious agents. From 2018 to 2019, 121 dead wild animals (55 birds and 66 mammals) were included in this study. All wild animals died during treatment after anthropogenic events. After deaths of animals, necropsies were performed and trachea, lungs, large intestine (including stool), and spleen were collected to determine causes of deaths. A high-throughput screening (HTS) quantitative polymerase chain reaction (qPCR) designed to detect 19 pathogens simultaneously against 48 samples in duplicate was performed using nucleic acids extracted from pooled tissues and peripheral blood samples. If positive, singleplex real-time PCR was performed for individual organs or blood samples. RESULTS: The HTS qPCR showed positive results for Campylobacter jejuni (10/121, 8.3%), Campylobacter coli (1/121, 0.8%), Mycoplasma spp. (78/121, 64.5%), and Plasmodium spp. (7/121, 5.7%). Singleplex real-time PCR confirmed that C. jejuni was detected in the large intestine but not in the blood. C. coli was only detected in the large intestine. Mycoplasma spp. were detected in all organs, having the highest proportion in the large intestine and lowest in the blood. Plasmodium spp. was also detected in all organs, with proportions being were similar among organs. CONCLUSIONS: This study shows that wild animals can become carriers of infectious agents without showing any clinical symptoms.


Assuntos
Campylobacter jejuni , Mycoplasma , Animais , Animais Selvagens , Ensaios de Triagem em Larga Escala/veterinária , República da Coreia , Autopsia/veterinária , Mamíferos
5.
Arch Virol ; 167(2): 425-439, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35079900

RESUMO

To date, few studies related to the evaluation of the pathogenicity of different PRRSV isolates using a reproductive model have been undertaken, and the main focus has remained on respiratory models using young pigs. This study aimed to evaluate the pathogenicity of two PRRSV-1 isolates (D40 and CBNU0495) and two PRRSV-2 isolates (K07-2273 and K08-1054) in a reproductive model. Pregnant sows were experimentally infected with PRRSV at gestational day 93 or used as an uninfected negative control. Sera were collected at 0, 3, 7, 14, and 19 days post-challenge (dpc) for virological and serological assays. At 19 dpc, all sows were euthanized, and their fetuses were recovered by performing cesarean section and immediately euthanized for sample collection. Here, compared to the other isolates, the CBNU0495 isolate replicated most efficiently in the pregnant sows, and K07-2273 produced the highest rate of reproductive failure even though it did not replicate as efficiently as the other isolates in sows and fetuses, indicating that vertical transmission and reproductive failure due to PRRSV infection do not have any significant correlation with the viral loads in samples from sows and fetuses. Similarly, the viral loads and the histopathological lesions did not show any correlation with each other, as the PRRSV-2-infected groups displayed more prominent and frequent histopathological lesions with lower viral loads than the PRRSV-1-infected groups. However, viral loads in the myometrium/endometrium might be related to the spreading of PRRSV in the fetuses, which affected the birth weight of live fetuses. This study contributes to a better understanding of the pathogenicity of the most prevalent Korean PRRSVs in a reproductive model.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Cesárea , Feminino , Transmissão Vertical de Doenças Infecciosas , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Gravidez , Suínos , Virulência
6.
Vet Res ; 52(1): 121, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530902

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is causing a global crisis. It is still unresolved. Although many therapies and vaccines are being studied, they are still in their infancy. As this pandemic continues, rapid and accurate research for the development of therapies and vaccines is needed. Therefore, it is necessary to understand characteristics of diseases caused by SARS-CoV-2 through animal models. Syrian hamsters are known to be susceptible to SARS-CoV-2. They were intranasally inoculated with SARS-CoV-2. At 2, 4, 8, 12, and 16 days post-infection (dpi), these hamsters were euthanized, and tissues were collected for ultrastructural and microstructural examinations. Microscopic lesions were prominent in the upper and lower respiratory tracts from 2 and 4 dpi groups, respectively. The respiratory epithelium in the trachea, bronchiole, and alveolar showed pathological changes. Inflammatory cells including neutrophils, lymphocytes, macrophages, and eosinophils were infiltrated in/around tracheal lamina propria, pulmonary vessels, alveoli, and bronchiole. In pulmonary lesions, alveolar wall was thickened with infiltrated inflammatory cells, mainly neutrophils and macrophages. In the trachea, epithelial damages started from 2 dpi and recovered from 8 dpi, consistent with microscopic results, High levels of SARS-CoV-2 nucleoprotein were detected at 2 dpi and 4 dpi. In the lung, lesions were most severe at 8 dpi. Meanwhile, high levels of SARS-CoV-2 were detected at 4 dpi. Electron microscopic examinations revealed cellular changes in the trachea epithelium and alveolar epithelium such as vacuolation, sparse micro-organelle, and poor cellular margin. In the trachea epithelium, the number of cytoplasmic organelles was diminished, and small vesicles were prominent from 2 dpi. Some of these electron-lucent vesicles were filled with virion particles. From 8 dpi, the trachea epithelium started to recover. Because of shrunken nucleus and swollen cytoplasm, the N/C ratio of type 2 pneumocyte decreased at 8 and 12 dpi. From 8 dpi, lamellar bodies on type 2 pneumocyte cytoplasm were increasingly observed. Their number then decreased from 16 dpi. However, there was no significant change in type 1 pneumocyte. Viral vesicles were only observed in the cytoplasm of type 2 pneumocyte. In conclusion, ultra- and micro-structural changes presented in this study may provide useful information for SARS-CoV-2 studies in various fields.


Assuntos
COVID-19/patologia , Sistema Respiratório/patologia , SARS-CoV-2/patogenicidade , Animais , Cricetinae , Imuno-Histoquímica/veterinária , Masculino , Mesocricetus , Projetos Piloto , RNA Viral/química , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sistema Respiratório/química , Sistema Respiratório/ultraestrutura , Sistema Respiratório/virologia , Fatores de Tempo , Traqueia/patologia , Traqueia/ultraestrutura , Traqueia/virologia , Redução de Peso
7.
Korean J Parasitol ; 59(5): 465-471, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34724765

RESUMO

Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous arthropod vectors that transmit epizootic arthropod-borne viruses (arboviruses). Arboviruses are recognized as causes of pregnancy loss, encephalomyelitis, and congenital malformations in ruminants. Therefore, continuous monitoring and control of Culicoides, which causes significant damage to industrial animals are necessary. We performed attraction and repellent tests in Culicoides using various essential oils, cow dung, and carbon dioxide (CO2). Culicoides tended to move more to cow dung (60.8%, P<0.0001) and CO2 (63.8%, P<0.01). To the essential oils as repellents, 26.1% (P<0.0001), 18.7% (P<0.001), and 25.5% (P<0.01) of the Culicoides moved to the lavender, lemongrass, and eucalyptus chamber, respectively. The Culicoides that moved to the 3 essential oils chambers showed markedly low activity. Collectively, it was showed that Culicoides tended to be attractive to cow dung and CO2, and repellent from the 3 essential oils.


Assuntos
Arbovírus , Ceratopogonidae , Óleos Voláteis , Animais , Dióxido de Carbono , Bovinos , Feminino , Óleos Voláteis/farmacologia , Ruminantes
8.
BMC Vet Res ; 16(1): 127, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375805

RESUMO

BACKGROUND: Multifocal spherical nonstaining cavities and gram-positive, rod-shaped, and endospore-forming bacteria were found in the liver of a sow that died suddenly. Clostridium novyi type B was identified and isolated from the sudden death case, and the isolate was characterized by molecular analyses and bioassays in the current study. RESULTS: C. novyi was isolated from the liver of a sow that died suddenly and was confirmed as C. novyi type B by differential PCR. The C. novyi isolate fermented glucose and maltose and demonstrated lecithinase activity, and the cell-free culture supernatant of the C. novyi isolate exhibited cytotoxicity toward Vero cells, demonstrating that the isolate produces toxins. In addition, whole-genome sequencing of the C. novyi isolate was performed, and the complete sequences of the chromosome (2.29 Mbp) and two plasmids (134 and 68 kbp) were identified for the first time. Based on genome annotation, 7 genes were identified as glycosyltransferases, which are known as alpha toxins; 23 genes were found to be related to sporulation; 12 genes were found to be related to germination; and 20 genes were found to be related to chemotaxis. CONCLUSION: C. novyi type B was isolated from a sow in a sudden death case and confirmed by biochemical and molecular characterization. Various virulence-associated genes were identified for the first time based on whole-genome sequencing.


Assuntos
Infecções por Clostridium/veterinária , Clostridium/genética , Clostridium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Chlorocebus aethiops , Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Morte Súbita/veterinária , Feminino , Genoma Bacteriano , Fígado/microbiologia , Plasmídeos/genética , Reação em Cadeia da Polimerase/veterinária , República da Coreia , Suínos , Células Vero
9.
Molecules ; 24(5)2019 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832429

RESUMO

DiNap [(E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one], an analog of a natural product (the chalcone flavokawain), was synthesized and characterized in this study. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most challenging threat to the swine industry worldwide. Currently, commercially available vaccines are ineffective for controlling porcine reproductive and respiratory syndrome (PRRS) in pigs. Therefore, a pharmacological intervention may represent an alternative control measure for PRRSV infection. Hence, the present study evaluated the effects of DiNap on the replication of VR2332 (a prototype strain of type 2 PRRSV). Initially, in vitro antiviral assays against VR2332 were performed in MARC-145 cells and porcine alveolar macrophages (PAMs). Following this, a pilot study was conducted in a pig model to demonstrate the effects of DiNap following VR2332 infection. DiNap inhibited VR2332 replication in both cell lines in a dose-dependent manner, and viral growth was completely suppressed at concentrations ≥0.06 mM, without significant cytotoxicity. Consistent with these findings, in the pig study, DiNap also reduced viral loads in the serum and lungs and enhanced the weight gain of pigs following VR2332 infection, as indicated by comparison of the DiNap-treated groups to the untreated control (NC) group. In addition, DiNap-treated pigs had fewer gross and microscopic lesions in their lungs than NC pigs. Notably, virus transmission was also delayed by approximately 1 week in uninfected contact pigs within the same group after treatment with DiNap. Taken together, these results suggest that DiNap has potential anti-PRRSV activity and could be useful as a prophylactic or post-exposure treatment drug to control PRRSV infection in pigs.


Assuntos
Produtos Biológicos/química , Flavonoides/química , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/síntese química , Chalcona/administração & dosagem , Chalcona/síntese química , Chalcona/química , Flavonoides/administração & dosagem , Flavonoides/síntese química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Macrófagos Alveolares/efeitos dos fármacos , Projetos Piloto , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos/virologia , Carga Viral
10.
Korean J Parasitol ; 56(5): 477-485, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30419733

RESUMO

Arthropod-borne viruses (Arboviruses) are transmitted by arthropods such as Culicoides biting midges and cause abortion, stillbirth, and congenital malformation in ruminants, apparently leading to economic losses to farmers. To monitor the distribution of Culicoides and to determine their relationship with different environmental conditions (temperature, humidity, wind speed, and altitude of the farms) on 5 cattle farms, Culicoides were collected during summer season (May-September) in 2016 and 2017, and analyzed for identification of species and detection of arboviruses. About 35% of the Culicoides were collected in July and the collection rate increased with increase in temperature and humidity. The higher altitude where the farms were located, the more Culicoides were collected on inside than outside. In antigen test of Culicoides against 5 arboviruses, only Chuzan virus (CHUV) (2.63%) was detected in 2016. The Akabane virus (AKAV), CHUV, Ibaraki virus and Bovine ephemeral fever virus (BEFV) had a positive rate of less than 1.8% in 2017. In antigen test of bovine whole blood, AKAV (12.96%) and BEFV (0.96%) were positive in only one of the farms. As a result of serum neutralization test, antibodies against AKAV were generally measured in all the farms. These results suggest that vaccination before the season in which the Culicoides are active is probably best to prevent arbovirus infections.


Assuntos
Infecções por Arbovirus/transmissão , Infecções por Arbovirus/veterinária , Arbovírus/isolamento & purificação , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Ceratopogonidae/virologia , Insetos Vetores/virologia , Altitude , Animais , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/prevenção & controle , Arbovírus/imunologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Umidade , República da Coreia/epidemiologia , Estações do Ano , Temperatura , Vacinação/veterinária , Vacinas Virais
11.
Vet Res ; 47(1): 62, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287214

RESUMO

Akabane virus (AKAV), an arthropod-transmitted bunyavirus, is a major cause of congenital abnormalities and encephalomyelitis in ruminants. In 2010, there was a major outbreak of encephalomyelitis in Korea and fifteen AKAV strains, including AKAV-7, were isolated from cows. To identify the neuropathogenicity of AKAV-7, we performed experimental infection of cows. Six-month-old female Korean Holstein dairy cattle were inoculated with AKAV-7 by various routes, including intracerebral (IC), intrasubarachnoid space (IS), subcutaneous (SC) and intravenous (IV); a separate group was vaccinated before intravenous infection. Five of the six cows in the IC group and two of the six cows in the IS group showed clinical signs such as locomotor ataxia and paralysis of the hind limbs. Three of six cows died after IC infection 9-12 days post infection (dpi). Histopathologic changes such as nonsuppurative encephalomyelitis were confirmed in various parts of the central nervous system in the IC, IS and SC groups. Early onset of neutralizing antibodies in the serum and lower viral mRNA levels in the peripheral blood mononuclear cells (PBMCs) and various tissues in the vaccinated group was noticeable compared to the unvaccinated group (IV group). We suggest that the AKAV vaccine currently used in Korea may be partially effective for protection against AKAV-7 in cows.


Assuntos
Infecções por Bunyaviridae/veterinária , Bunyaviridae , Doenças dos Bovinos/virologia , Encefalomielite/veterinária , Animais , Anticorpos Neutralizantes/imunologia , Infecções por Bunyaviridae/patologia , Infecções por Bunyaviridae/virologia , Bovinos , Doenças dos Bovinos/patologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Encefalomielite/patologia , Encefalomielite/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Viremia/veterinária , Viremia/virologia
12.
Viruses ; 16(3)2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543766

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne zoonotic disease, is caused by infection with SFTS virus (SFTSV). A previous study reported that human-to-human direct transmission of SFTSV can occur. However, potential animal-to-animal transmission of SFTSV without ticks has not been fully clarified. Thus, the objective of this study was to investigate potential mice-to-mice transmission of SFTSV by co-housing three groups of mice [i.e., wild-type mice (WT), mice injected with an anti-type I interferon-α receptor-blocking antibody (IFNAR Ab), and mice with knockout of type I interferon-α receptor (IFNAR KO)] as spreaders or recipients with different immune competence. As a result, co-housed IFNAR Ab and IFNAR KO mice showed body weight loss with SFTS viral antigens detected in their sera, extracorporeal secretions, and various organs. Based on histopathology, white pulp atrophy in the spleen was observed in all co-housed mice except WT mice. These results obviously show that IFNAR Ab and IFNAR KO mice, as spreaders, exhibited higher transmissibility to co-housed mice than WT mice. Moreover, IFNAR KO mice, as recipients, were more susceptible to SFTSV infection than WT mice. These findings suggest that type I interferon signaling is a pivotal factor in mice intraspecies transmissibility of SFTSV in the absence of vectors such as ticks.


Assuntos
Infecções por Bunyaviridae , Interferon Tipo I , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Doenças Transmitidas por Carrapatos , Humanos , Animais , Camundongos
13.
J Med Food ; 27(4): 330-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387002

RESUMO

Gastric cancer is the fifth most common cancer globally and the third leading cause of cancer-related mortality. Existing treatment strategies for gastric cancer often present numerous side effects. Consequently, recent studies have shifted toward devising new treatments grounded in safer natural substances. α-Pinene, a natural terpene found in the essential oils of various plants, such as Lavender angustifolia and Satureja myrtifolia, displays antioxidant, antibiotic, and anticancer properties. Yet, its impact on gastric cancer remains unexplored. This research assessed the effects of α-pinene in vitro using a human gastric adenocarcinoma cell-line (AGS) human gastric cancer cells and in vivo via a xenograft mouse model. The survival rate of AGS cells treated with α-pinene was notably lower than that of the control group, as revealed by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. This decline in cell viability was linked to apoptosis, as verified by 4',6-diamidino-2-phenylindole and annexin V/propidium iodide staining. The α-pinene-treated group exhibited elevated cleaved-poly (ADP-ribose) polymerase and B cell lymphoma 2 (Bcl-2)-associated X (Bax) levels and reduced Bcl-2 levels compared with the control levels. Moreover, α-pinene triggered the activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 within the mitogen-activated protein kinase (MAPK) pathway. In the xenograft mouse model, α-pinene induced apoptosis through the MAPK pathway, devoid of toxicity. These findings position α-pinene as a promising natural therapeutic for gastric cancer.


Assuntos
Monoterpenos Bicíclicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose , MAP Quinases Reguladas por Sinal Extracelular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células
14.
Vaccines (Basel) ; 12(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38400173

RESUMO

All pigs in the Republic of Korea are given the foot-and-mouth disease virus (FMDV) vaccine intramuscularly (IM) as part of the country's vaccination policy. However, the IM administration of the FMDV vaccine to pig results in residual vaccine components in the muscle and undesirable changes in muscle and soft tissues, causing economic losses in swine production. In this study, we evaluated whether intradermal (ID) vaccination could be proposed as an alternative to IM administration. ID vaccination (0.2 mL on each side of the neck muscle) and IM vaccination (2 mL on each side of the neck muscle) were performed twice, separated by 14 days, using a commercial FMD vaccine in specific-pathogen-free pigs. We observed growth performance, gross and microscopic lesions at the inoculation site, FMDV-specific antibodies, and neutralizing antibodies for 35 days after vaccination. Side effects on the skin grossly appeared following ID administration, but most were reduced within two weeks. All ID-vaccinated pigs showed inflammatory lesions limited to the dermis, but IM-vaccinated pigs had abnormal undesirable changes and pus in the muscle. ID-vaccinated pigs performed comparably to IM-vaccinated pigs in terms of growth, FMD virus-specific antibodies, protection capability against FMDV, and T-cell induction. This study demonstrated that the ID inoculation of the inactivated FMD vaccine induced immune responses comparable to an IM injection at 1/10 of the inoculation dose and that the inoculation lesion was limited to the dermis, effectively protecting against the formation of abnormal undesirable changes in muscle and soft tissues.

15.
Sci Rep ; 13(1): 3303, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849513

RESUMO

A highly contagious virus, severe acute respiratory syndrome coronavirus 2, caused the coronavirus disease 19 (COVID-19) pandemic (SARS-CoV-2). SARS-CoV-2 genetic variants have been reported to circulate throughout the COVID-19 pandemic. COVID-19 symptoms include respiratory symptoms, fever, muscle pain, and breathing difficulty. In addition, up to 30% of COVID-19 patients experience neurological complications such as headaches, nausea, stroke, and anosmia. However, the neurotropism of SARS-CoV-2 infection remains largely unknown. This study investigated the neurotropic patterns between the B1.617.2 (Delta) and Hu-1 variants (Wuhan, early strain) in K18-hACE2 mice. Despite both the variants inducing similar pathogenic patterns in various organs, B1.617.2-infected K18-hACE2 mice demonstrated a higher range of disease phenotypes such as weight loss, lethality, and conjunctivitis when compared to those in Hu-1-infected mice. In addition, histopathological analysis revealed that B1.617.2 infects the brain of K18-hACE2 mice more rapidly and effectively than Hu-1. Finally, we discovered that, in B1.617.2-infected mice, the early activation of various signature genes involved innate cytokines and that the necrosis-related response was most pronounced than that in Hu-1-infected mice. The present findings indicate the neuroinvasive properties of SARS-CoV-2 variants in K18-hACE2 mice and link them to fatal neuro-dissemination during the disease onset.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Pandemias
16.
Front Immunol ; 14: 1197649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483612

RESUMO

Introduction: Bovine herpesvirus 4 (BoHV-4) is a bovine Rhadinovirus not associated with a specific pathological lesion or disease and experimentally employed as a viral vector vaccine. BoHV-4-based vector (BoHV-4-BV) has been shown to be effective in immunizing and protecting several animal species when systemically administrated through intramuscular, subcutaneous, intravenous, or intraperitoneal routes. However, whether BoHV-4-BV affords respiratory disease protection when administered intranasally has never been tested. Methods: In the present study, recombinant BoHV-4, BoHV-4-A-S-ΔRS-HA-ΔTK, was constructed to deliver an expression cassette for the SARS-CoV-2 spike glycoprotein, and its immunogenicity, as well as its capability to transduce cells of the respiratory tract, were tested in mice. The well-established COVID-19/Syrian hamster model was adopted to test the efficacy of intranasally administered BoHV-4-A-S-ΔRS-HA-ΔTK in protecting against a SARS-CoV-2 challenge. Results: The intranasal administration of BoHV-4-A-S-ΔRS-HA-ΔTK elicited protection against SARS-CoV-2, with improved clinical signs, including significant reductions in body weight loss, significant reductions in viral load in the trachea and lungs, and significant reductions in histopathologic lung lesions compared to BoHV-4-A-S-ΔRS-HA-ΔTK administered intramuscularly. Discussion: These results suggested that intranasal immunization with BoHV-4-BV induced protective immunity and that BoHV-4-BV could be a potential vaccine platform for the protection of other animal species against respiratory diseases.


Assuntos
COVID-19 , Herpesvirus Bovino 4 , Vacinas Virais , Animais , Camundongos , Cricetinae , COVID-19/prevenção & controle , SARS-CoV-2 , Administração Intranasal
17.
Vet Med Sci ; 8(6): 2678-2682, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043450

RESUMO

A 14-year-old male grey wolf (Canis lupus) with a history of severe facial swelling was submitted for necropsy. Clinical and radiological examination demonstrated an expansile neoplastic mass in the nasal and frontal sinuses. On necropsy, an amorphous neoplastic mass and extensive necrosis were observed in the nasal turbinate. Microscopic examination revealed a tumour principally composed of obvious clear tumour cells characterised by small hyperchromatic nuclei and abundant clear cytoplasm. These clear cells were positive for mucin with PAS, PAS-D reaction, and alcian blue (pH 2.5) staining, but negative for PTAH staining. Immunohistochemically, some of tumour cells were strongly positive for mesenchymal cells (vimentin), whereas they were negative for myoepithelial antigen (alpha-SMA) and cytokeratin. Based on the histopathological and immunohistochemical features, the present case was diagnosed as high-grade clear cell variant mucoepidermoid carcinoma (MEC). This is the first description of clear cell variant MEC in a wolf.


Assuntos
Carcinoma Mucoepidermoide , Lobos , Animais , Masculino , Carcinoma Mucoepidermoide/diagnóstico , Carcinoma Mucoepidermoide/veterinária , Glândulas Salivares
18.
Front Immunol ; 13: 811802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250985

RESUMO

A mouse model of SARS-CoV-2 that can be developed in any molecular biology lab with standard facilities will be valuable in evaluating drugs and vaccines. Here we present a simplified SARS-CoV-2 mouse model exploiting the rapid adenoviral purification method. Mice that are sensitive to SARS-CoV-2 infection were generated by transducing human angiotensin-converting enzyme 2 (hACE2) by an adenovirus. The expression kinetics of the hACE2 in transduced mice were assessed by immunohistochemistry, RT-PCR, and qPCR. Further, the ability of the hACE2 to support viral replication was determined in vitro and in vivo. The hACE2 expression in the lungs of mice was observed for at least nine days after transduction. The murine macrophages expressing hACE2 supported viral replication with detection of high viral titers. Next, in vivo studies were carried out to determine viral replication and lung disease following SARS-CoV-2 challenge. The model supported viral replication, and the challenged mouse developed lung disease characteristic of moderate interstitial pneumonia. Further, we illustrated the utility of the system by demonstrating protection using an oral mRNA vaccine. The multicistronic vaccine design enabled by the viral self-cleaving peptides targets receptor binding domain (RBD), heptad repeat domain (HR), membrane glycoprotein (M) and epitopes of nsp13 of parental SARS-CoV-2. Further, Salmonella and Semliki Forest virus replicon were exploited, respectively, for gene delivery and mRNA expression. We recorded potent cross-protective neutralizing antibodies in immunized mice against the SARS-CoV-2 delta variant. The vaccine protected the mice against viral replication and SARS-CoV-2-induced weight loss and lung pathology. The findings support the suitability of the model for preclinical evaluation of anti-SARS-CoV-2 therapies and vaccines. In addition, the findings provide novel insights into mRNA vaccine design against infectious diseases not limiting to SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Replicon/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Glicoproteína da Espícula de Coronavírus/imunologia , Replicação Viral/imunologia
19.
J Wildl Dis ; 58(4): 926-930, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300955

RESUMO

An adult Eurasian Eagle Owl (Bubo bubo) rescued from drowning was unable to fly. After euthanasia, necropsy and histopathologic examination showed granulomatous inflammation and intracellular acid-fast stain-positive rod-shaped bacteria in the skin, lung, liver, and spleen, which were identified by using molecular analysis as Mycobacterium abscessus.


Assuntos
Mycobacterium abscessus , Animais , Autopsia/veterinária
20.
Front Vet Sci ; 9: 978398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157181

RESUMO

African swine fever virus (ASFV) is a notable virus and one of the most serious global threats to the pig industry. Improving awareness about host-virus interactions could facilitate the understanding of the disease pathogenesis. Therefore, we investigated changes in blood parameters, viral loads, and pathological changes in ASFV-inoculated pigs according to the time of death after the onset of viremia. For the analyses, the ASFV-infected pigs (n = 10) were divided into two groups (five pigs/group) according to their time of death after the onset of viremia. The blood cell count dynamics and serum biochemistry profiles were similar between the groups; however, viral load distribution was different. A comparison of the histopathological changes and immunohistochemistry results between the two groups indicated that the lymphoid system, particularly the spleen, was more damaged in the early stage of the disease than in the last stage. Additionally, the virus-induced lesions in other organs (liver and kidney) were more severe in the late stage than in the early stage. Our findings provide invaluable information on the characteristics of blood parameters and pathological lesions in pigs infected with the Asia-epidemic ASFV strain and the course of ASF, targeting internal organs in pigs. Overall, this study characterizes the host-pathogen interaction in ASFV infection, offering insight for the establishment of ASF control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA