Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemosphere ; 253: 126737, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302908

RESUMO

Bioaerosols have widely been a concern due to their potential harm to human health caused by the carrying and spreading of harmful microorganisms. Biofiltration has been generally used as a green and effective technology for processing VOCs. However, bioaerosols can be emitted into the atmosphere as secondary pollutants from the biofiltration process. This review presents an overview of bioaerosol emissions from gas bioreactors. The mechanism of bioaerosols production and the effect of biofiltration on bioaerosol emissions were analyzed. The results showed that the bioaerosol emission concentrations were generally exceeded 104 CFU m-3, which would damage to human health. Biomass, inlet gas velocity, moisture content, temperature, and some other factors have significant influences on bioaerosol emissions. Moreover, as a result of the analysis done herein, different inactivation technologies and microbial immobilization of bioaerosols were proposed and evaluated as a potential solution for reducing bioaerosols emissions. The purpose of this paper is to make more people realize the importance of controlling the emissions of bioaerosols in the biofiltration process and to make the treatment of VOCs by biotechnology more environmentally friendly. Additionally, the present work intends to increase people's awareness in regards to the control of bioaerosols, including microbial fragment present in bioaerosols.


Assuntos
Microbiologia do Ar/normas , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Reatores Biológicos/microbiologia , Desinfecção/métodos , Aerossóis , Poluentes Atmosféricos/efeitos da radiação , Atmosfera/química , Biomassa , Química Verde , Humanos , Peróxido de Hidrogênio/química , Oxirredução , Ozônio/química , Raios Ultravioleta
2.
Chemosphere ; 251: 126358, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155493

RESUMO

Acidic substances, which produced during chlorinated volatile organic compounds, will corrode the commonly used packing materials, and then affect the removal performance of biofiltration. In this study, three biofilters with different filter bed structure were established to treat gaseous chlorobenzene. CaCO3 and 3D matrix material was added in filter bed as pH buffering material and filter bed supporting material, respectively. A comprehensive investigation of removal performance, biomass accumulation, microbial community, filter bed height, voidage, pressure drops, and specific surface area of the three biofilters was compared. The biofilter with CaCO3 and 3D matrix material addition presented stable removal performance and microbial community, and greater biomass density (209.9 kg biomass/m3 filter bed) and growth rate (0.033 d-1) were obtained by using logistic equation. After 200 days operation, the height, voidage, pressure drop, specific surface area of the filter bed consisted of perlite was 27.4 cm, 0.39, 32.8 Pa/m, 974,89 m2/m3, while those of the filter bed with CaCO3 addition was 28.2 cm, 0.43, 21.3 Pa/m, and 1021.03 m2/m3, and those of the filter bed with CaCO3 and 3D matrix material addition was 28.7 cm, 0.55, 17.4 Pa/m, and 1041.60 m2/m3. All the results verified the biofilter with CaCO3 and 3D matrix material addition is capable of sustaining the long-term performance of biofilters. CaCO3 could limit the changes of removal efficiency, microbial community and filter bed structure by buffering the pH variation. And 3D matrix material could maintain the filter bed structure by supporting the filter bed, regardless of the buffering effect.


Assuntos
Clorobenzenos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Óxido de Alumínio , Biomassa , Filtração/métodos , Gases , Concentração de Íons de Hidrogênio , Dióxido de Silício , Compostos Orgânicos Voláteis/química
3.
Fen Zi Xi Bao Sheng Wu Xue Bao ; 41(1): 81-5, 2008 Feb.
Artigo em Zh | MEDLINE | ID: mdl-18464594

RESUMO

We constructed a recombinant plasmid of water channel protein Aquaporin 1 (AQP1) carboxyl terminal domain (DNA sequence from 700bp-801bp) in pGEX-4T-1 vector and express the carboxyl terminal hydrophilic peptide AQP1 in E. coli. In this study, the DNA sequence of AQP1 hydrophilic peptide was amplified by PCR and was cloned into pGEX-4T-1 expression vector. After identified by restriction enzyme digestion and sequencing, the recombinant clone was transformed into the competent expression cells of E. coli BL21. The GST-AQP1 fusion protein was induced by IPTG and further purified by Glutathione Sepharose 4B to obtain a fusion protein with molecular weight of 30KD. So the fusion protein of AQP1 C-terminal hydrophilic peptide combined with GST was successfully expressed and purified. We set up important bases for the further research in AQP1 gene function.


Assuntos
Aquaporina 1/genética , Escherichia coli/genética , Expressão Gênica , Glutationa Transferase/genética , Aquaporina 1/química , Aquaporina 1/isolamento & purificação , Aquaporina 1/metabolismo , Sequência de Bases , Clonagem Molecular , Escherichia coli/metabolismo , Glutationa Transferase/química , Glutationa Transferase/isolamento & purificação , Glutationa Transferase/metabolismo , Dados de Sequência Molecular , Peso Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA