Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11447-11458, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899977

RESUMO

Mine tailings are extremely oligotrophic environments frequently contaminated with elevated As and Sb, making As(III) and Sb(III) oxidation potentially important energy sources for the tailing microbiome. Although they have been proposed to share similar metabolic pathways, a systemic comparison of the As(III) and Sb(III) oxidation mechanisms and energy utilization efficiencies requires further elucidation. In this study, we employed a combination of physicochemical, molecular, and bioinformatic analyses to compare the kinetic and genetic mechanisms of As(III) and Sb(III) oxidation as well as their respective energy efficiencies for fueling the key nutrient acquisition metabolisms. Thiobacillus and Rhizobium spp. were identified as functional populations for both As(III) and Sb(III) oxidation in mine tailings by DNA-stable isotope probing. However, these microorganisms mediated As(III) and Sb(III) oxidation via different metabolic pathways, resulting in preferential oxidation of Sb(III) over As(III). Notably, both As(III) and Sb(III) oxidation can facilitate nitrogen fixation and phosphate solubilization in mine tailings, with Sb(III) oxidation being more efficient in powering these processes. Thus, this study provided novel insights into the microbial As(III) and Sb(III) oxidation mechanisms and their respective nutrient acquisition efficiencies, which may be critical for the reclamation of mine tailings.


Assuntos
Oxirredução , Antimônio/metabolismo , Mineração , Arsênio/metabolismo
2.
Microb Ecol ; 84(1): 44-58, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34398256

RESUMO

Nitrogen (N) shortage poses a great challenge to the implementation of in situ bioremediation practices in mining-contaminated sites. Diazotrophs can fix atmospheric N2 into a bioavailable form to plants and microorganisms inhabiting adverse habitats. Increasing numbers of studies mainly focused on the diazotrophic communities in the agroecosystems, while those communities in mining areas are still not well understood. This study compared the variations of diazotrophic communities in composition and interactions in the mining areas with different extents of arsenic (As) and antimony (Sb) contamination. As and Sb co-contamination increased alpha diversities and the abundance of nifH encoding the dinitrogenase reductase, while inhibited the diazotrophic interactions and substantially changed the composition of communities. Based on the multiple lines of evidence (e.g., the enrichment analysis of diazotrophs, microbe-microbe network, and random forest regression), six diazotrophs (e.g., Sinorhizobium, Dechloromonas, Trichormus, Herbaspirillum, Desmonostoc, and Klebsiella) were identified as keystone taxa. Environment-microbe network and random forest prediction demonstrated that these keystone taxa were highly correlated with the As and Sb contamination fractions. All these results imply that the above-mentioned diazotrophs may be resistant to metal(loid)s.


Assuntos
Arsênio , Microbiota , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Monitoramento Ambiental , Poluentes do Solo/análise
3.
Environ Sci Technol ; 56(22): 15705-15717, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36288260

RESUMO

Microplastic (MP) contamination is a serious global environmental problem. Plastic contamination has attracted extensive attention during the past decades. While physiochemical weathering may influence the properties of MPs, biodegradation by microorganisms could ultimately mineralize plastics into CO2. Compared to the well-studied marine ecosystems, the MP biodegradation process in riverine ecosystems, however, is less understood. The current study focuses on the MP biodegradation in one of the world's most plastic contaminated rivers, Pearl River, using micropolyethylene (mPE) as a model substrate. Mineralization of 13C-labeled mPE into 13CO2 provided direct evidence of mPE biodegradation by indigenous microorganisms. Several Actinobacteriota genera were identified as putative mPE degraders. Furthermore, two Mycobacteriaceae isolates related to the putative mPE degraders, Mycobacterium sp. mPE3 and Nocardia sp. mPE12, were retrieved, and their ability to mineralize 13C-mPE into 13CO2 was confirmed. Pangenomic analysis reveals that the genes related to the proposed mPE biodegradation pathway are shared by members of Mycobacteriaceae. While both Mycobacterium and Nocardia are known for their pathogenicity, these populations on the plastisphere in this study were likely nonpathogenic as they lacked virulence factors. The current study provided direct evidence for MP mineralization by indigenous biodegraders and predicted their biodegradation pathway, which may be harnessed to improve bioremediation of MPs in urban rivers.


Assuntos
Mycobacteriaceae , Poluentes Químicos da Água , Plásticos/análise , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Dióxido de Carbono/análise , Rios/química
4.
J Hazard Mater ; 454: 131458, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37099912

RESUMO

Pteris vittata is an arsenic(As)-hyperaccumulator that may be employed in phytoremediation of As-contaminated soils. P. vittata-associated microbiome are adapted to elevated As and may be important for host survival under stresses. Although P. vittata root endophytes could be critical for As biotransformation in planta, their compositions and metabolisms remain elusive. The current study aims to characterize the root endophytic community composition and As-metabolizing potentials in P. vittata. High As(III) oxidase gene abundances and rapid As(III) oxidation activity indicated that As(III) oxidation was the dominant microbial As-biotransformation processes compared to As reduction and methylization in P. vittata roots. Members of Rhizobiales were the core microbiome and the dominant As(III) oxidizers in P. vittata roots. Acquasition of As-metabolising genes, including both As(III) oxidase and As(V) detoxification reductase genes, through horizontal gene transfer was identified in a Saccharimonadaceae genomic assembly, which was another abundant population residing in P. vittata roots. Acquisition of these genes might improve the fitness of Saccharimonadaceae population to elevated As concentrations in P. vittata. Diverse plant growth promoting traits were encoded by the core root microbiome populations Rhizobiales. We propose that microbial As(III) oxidation and plant growth promotion are critical traits for P. vittata survival in hostile As-contaiminated sites.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/metabolismo , Pteris/metabolismo , Raízes de Plantas/metabolismo , Oxirredução , Oxirredutases/metabolismo , Biodegradação Ambiental , Poluentes do Solo/metabolismo
5.
Environ Pollut ; 291: 118248, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592324

RESUMO

A nitrogen (N) deficiency will usually hinder bioremediation efforts in mining-derived habitats such as occurring in mining regions. Diazotrophs can provide N to support the growth of plants and microorganisms in these environments. However, diazotrophic communities in mining areas have been not studied frequently and are more poorly understood than those in other environments, such as in agricultural soils or in the presence of legumes. The current study compares the differences in depth-resolved diazotrophic community compositions and interactions in two contrasting sites (to depths of 2 m), including a highly contaminated and a moderately contaminated site. Antimony (Sb) and arsenic (As) co-contamination induced a loosely connected biotic interaction, and a selection of deep soils by diazotrophic communities. Multiple lines of evidence, including the enrichment of diazotrophic taxa in the highly contaminated sites, microbe-microbe interactions, environment-microbe interactions, and a machine learning approach (random forests regression), demonstrated that Rhizobium was the keystone taxon within the vertical profile of contaminated soil and was resistant to the Sb and As contaminant fractions. All of these observations suggest that one diazotroph, Rhizobium, may play an important role in N fixation in the examined contaminated sites.


Assuntos
Arsênio , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Monitoramento Ambiental , Solo , Microbiologia do Solo , Poluentes do Solo/análise
6.
Sci Total Environ ; 784: 147239, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088025

RESUMO

Anaerobic methane oxidation (AOM) plays an important role in sinking global methane and thereby in constraining climate change. Anthropogenic activities in antimony (Sb) mines have resulted in Sb contamination in rice fields, which are among the dominant methane sources. However, the knowledge of effects of Sb on AOM in paddy soils and the microbiota involved in this process remains limited. Herein, Sb was amended into the paddy soil to investigate the effects of Sb contamination on AOM and the microbial communities such as methanotrophs. Significant inhibition of AOM was observed in the treatment with Sb addition in comparison with the treatment without Sb addition. The significant increases in the abundance of the mcrA genes, responsible for methane production and oxidation, were observed in the treatment with/without Sb addition. In contrast, no significant increases in the copy number of the mcrA gene were detected in the treatment with the addition of the methanogenic and methanotrophic inhibitor 2-bromoethanesulfonate (BES). These results suggested that Sb contamination might inhibit only AOM but not methane production. In addition, amplicon high-throughput sequencing showed that the Sb addition impaired the diversity of microbial communities and impacted the biotic interactions in the soil. However, the abundance of bacterial methane-oxidizing phylum NC10 and its biotic connections with other microbes were enhanced by the addition of Sb. Pseudogulbenkiania and Methanosarcina dominated the bacterial and archaeal communities in the treatment without Sb addition, while the bacteria Ramlibacter and Geothrix and the archaea Methanomethylovorans were the most abundant genera in the treatment with Sb addition. These analyses of microbial communities indicated that Sb addition had significant effects on both the compositions of bacterial and archaeal communities. This study expands our knowledge of the effects of Sb contamination on AOM and the microbial (especially methanotrophs) diversity and composition in paddy soils.

7.
Environ Int ; 153: 106522, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33812041

RESUMO

Microorganisms can mediate arsenic (As) and antimony (Sb) transformation and thus change the As and Sb toxicity and mobility. The influence of As and Sb on the innate microbiome has been extensively characterized. However, how microbial metabolic potentials are influenced by the As and Sb co-contamination is still ambiguous. In this study, we selected two contrasting sites located in the Shimen realgar mine, the largest realgar mine in Asia, to explore the adaptability and response of the soil microbiome to As and Sb co-contamination and the impact of co-contamination on microbial metabolic potentials. It is observed that the geochemical parameters, including the As and Sb fractions, were the driving forces that reshaped the community composition and metabolic potentials. Bacteria associated with Bradyrhizobium, Nocardioides, Sphingomonas, Burkholderia, and Streptomyces were predicted to be tolerant to high concentrations of As and Sb. Co-occurrence network analysis revealed that the genes related to C fixation, nitrate/nitrite reduction, N fixation, and sulfate reduction were positively correlated with the As and Sb fractions, suggesting that As and Sb biogeochemical cycling may interact with and benefit from C, N, and S cycling. The results suggest that As and Sb co-contamination not only influences As-related genes, but also influences other genes correlated with microbial C, N, and S cycling.


Assuntos
Arsênio , Microbiota , Poluentes do Solo , Antimônio/toxicidade , Arsênio/análise , Arsênio/toxicidade , Ásia , Carbono , Monitoramento Ambiental , Nitrogênio , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA