Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 216, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410639

RESUMO

BACKGROUND: Camellia sinensis 'Huangjinju' is an albino tea variety developed recently in China. Young leaves of 'Huangjinju' demonstrate bright yellow when cultivated under natural sunlight, but regreens under reduced light intensity. To elucidate the physiological and molecular mechanisms of this light-sensitive albinism, we compared leaf pigmentation, metabolites, cellular ultrastructure and transcriptome between plants cultured under natural sunlight and shade. RESULTS: Shading treatment doubled the chlorophyll concentration and regreened albino leaves; carotenoid also increased by 30%. Electron microscopy analyses showed that chloroplast not only increased in number but also in size with a complete set of components. In addition, regreened leaves also had a significantly higher concentration of polyphenols and catechins than albino leaves. At transcriptomic level, a total of 507 genes were differentially expressed in response to light condition changes. The most enriched pathways include light harvest protein complex, response to stimuli, oxidation-reduction process, generation of precursor metabolites and energy response. CONCLUSION: The integrated strategy in this study allows a mechanistic understanding of leaf albinism in light-sensitive tea plants and suggested the regulation of gene networks involved in pigmentation and protein processing. Results from this study provide valuable information to this area and can benefit the domestication and artificial breeding to develop new albino tea varieties.


Assuntos
Camellia sinensis/fisiologia , Regulação da Expressão Gênica de Plantas , Luz , Fotossíntese , Pigmentação/genética , Transcriptoma , Camellia sinensis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cor , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Transdução de Sinais
2.
Foods ; 11(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954069

RESUMO

The metabolites in the tender shoots of the tea plant are the material basis for the determination of tea quality. The composition and abundance of these metabolites are affected by many key factors, and the tea plant's age is one of them. However, the effect of plant age on the tender shoot metabolites of tea cultivars of different genotypes is poorly understood. Therefore, we used a combination of untargeted metabolomics and transcriptomics to analyze the differential mechanism behind the differences in the metabolites of the spring tender shoots of 7- and 40-year-old tea plants of two tea cultivars of different genotypes. We found that plant age could significantly change the metabolites in the spring tender shoots of tea plants and that flavonoids, and amino acids and their derivatives, were predominant among the differential metabolites. The quantities of most flavonoids in the aged tea plants of different genotypes were upregulated, which was caused by the upregulated expression of differential genes in the flavonoid biosynthesis pathway. We further discovered that 11 key structural genes play key regulatory roles in the changes in the flavonoid contents of tea plants of different plant ages. However, the influence of plant age on amino acids and their derivatives might be cultivar-specific. By characterizing and evaluating the quality-related metabolites of tea cultivars of two different genotypes at different plant ages, we found that whether an old tea plant (40 years old) can produce high-quality tea is related to the genotype of the tea plant.

3.
Bot Stud ; 62(1): 21, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34897570

RESUMO

BACKGROUND: Light is the ultimate energy source of plant photosynthesis, which has an important impact on the growth, development, physiology and biochemistry of tea plant. Photosensitive etiolated tea plant belongs to a kind of colored leaf plant, which is a physiological response to light intensity. Compared with conventional green bud and leaf of tea plant, the accumulation of pigment compounds (chlorophyll and carotenoids, etc.) closely related to a series of reactions of photosynthesis in photosensitive etiolated tea plant is reduced, resulting in the difference of leaf color of tea. This specific tea resource has high application value, among which high amino acid is one of its advantages. It can be used to process high-quality green tea with delicious taste and attractive aroma, which has been widely attention. The mechanism of the color presentation of the etiolated mutant tea leaves has been given a high topic and attention, especially, what changes have taken place in the pigment compounds of tea leaves caused by light, which makes the leaves so yellow. At present, there have been a lot of research and reports. PURPOSE OF THE REVIEW: We describe the metabolism and differential accumulation of key pigment compounds affecting the leaf color of photosensitive etiolated tea that are triggered by light, and discuss the different metabolism and key regulatory sites of these pigments in different light environments in order to understand the "discoloration" matrix and mechanism of etiolated tea resources, answer the scientific question between leaf color and light. It provides an important strategy for artificial intervention of discoloration of colored tea plant. CONCLUSION: The differential accumulation of pigment compounds in tea plant can be induced phytochrome in response to the change of light signal. The synthesis of chlorophyll in photoetiolated tea plants is hindered by strong light, among which, the sites regulated by coproporphyrinogen III oxidase and chlorophyllide a oxidase is sensitive to light and can be inhibited by strong light, resulting in the aggravation of leaf etiolation. The phenomenon can be disappeared or weakened by shading or reducing light intensity, and the leaf color is greenish, but the increase of chlorophyll-b accumulation is more than that of chlorophyll-a. The synthesis of carotenoids is inhibited strong light, and high the accumulation of carotenoids is reduced by shading. Most of the genes regulating carotenoids are up-regulated by moderate shading and down-regulated by excessive shading. Therefore, the accumulation of these two types of pigments in photosensitive etiolated tea plants is closely related to the light environment, and the leaf color phenotype shape of photosensitive etiolated tea plants can be changed by different light conditions, which provides an important strategy for the production and management of tea plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA