Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 67(6): 1017-1035, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548343

RESUMO

Neuroinflammation in the central nervous system (CNS) is an important subject of neuroimmunological research. Emerging evidence suggests that neuroinflammation is a key player in various neurological disorders, including neurodegenerative diseases and CNS injury. Neuroinflammation is a complex and well-orchestrated process by various groups of glial cells in CNS and peripheral immune cells. The cross-talks between various groups of glial cells in CNS neuroinflammation is an extremely complex and dynamic process which resembles a well-orchestrated symphony. However, the understanding of how glial cells interact with each other to shape the distinctive immune responses of the CNS remains limited. In this review, we will discuss the joint actions of glial cells in three phases of neuroinflammation, including initiation, progression, and prognosis, the three movements of the symphony, as the role of each type of glial cells in neuroinflammation depends on the nature of inflammatory cues and specific course of diseases. This perspective of glial cells in neuroinflammation might provide helpful clues to the development of the early diagnosis and therapeutic intervention of the various CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/metabolismo , Mediadores da Inflamação/metabolismo , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/imunologia , Neuroglia/patologia
2.
BMC Med ; 17(1): 204, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727112

RESUMO

BACKGROUND: Brain innate immunity is vital for maintaining normal brain functions. Immune homeostatic imbalances play pivotal roles in the pathogenesis of neurological diseases including Parkinson's disease (PD). However, the molecular and cellular mechanisms underlying the regulation of brain innate immunity and their significance in PD pathogenesis are still largely unknown. METHODS: Cre-inducible diphtheria toxin receptor (iDTR) and diphtheria toxin-mediated cell ablation was performed to investigate the impact of neuron-glial antigen 2 (NG2) glia on the brain innate immunity. RNA sequencing analysis was carried out to identify differentially expressed genes in mouse brain with ablated NG2 glia and lipopolysaccharide (LPS) challenge. Neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice were used to evaluate neuroinflammatory response in the presence or absence of NG2 glia. The survival of dopaminergic neurons or glial cell activation was evaluated by immunohistochemistry. Co-cultures of NG2 glia and microglia were used to examine the influence of NG2 glia to microglial activation. RESULTS: We show that NG2 glia are required for the maintenance of immune homeostasis in the brain via transforming growth factor-ß2 (TGF-ß2)-TGF-ß type II receptor (TGFBR2)-CX3C chemokine receptor 1 (CX3CR1) signaling, which suppresses the activation of microglia. We demonstrate that mice with ablated NG2 glia display a profound downregulation of the expression of microglia-specific signature genes and remarkable inflammatory response in the brain following exposure to endotoxin lipopolysaccharides. Gain- or loss-of-function studies show that NG2 glia-derived TGF-ß2 and its receptor TGFBR2 in microglia are key regulators of the CX3CR1-modulated immune response. Furthermore, deficiency of NG2 glia contributes to neuroinflammation and nigral dopaminergic neuron loss in MPTP-induced mouse PD model. CONCLUSIONS: These findings suggest that NG2 glia play a critical role in modulation of neuroinflammation and provide a compelling rationale for the development of new therapeutics for neurological disorders.


Assuntos
Antígenos/fisiologia , Encéfalo/imunologia , Imunidade Inata , Neuroglia/fisiologia , Doença de Parkinson/imunologia , Proteoglicanas/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Animais , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
3.
J Clin Transl Hepatol ; 11(7): 1553-1564, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38161496

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) can originate from the large bile duct group (segment bile ducts and area bile ducts), small bile duct group (septal bile ducts and interlobular bile ducts), and terminal bile duct group (bile ductules and canals of Hering) of the intrahepatic biliary tree, which can be histopathological corresponding to large duct type iCCA, small duct type iCCA and iCCA with ductal plate malformation pattern, and cholangiolocarcinoma, respectively. The challenge in pathological diagnosis of above subtypes of iCCA falls in the distinction of cellular morphologies, tissue structures, growth patterns, invasive behaviors, immunophenotypes, molecular mutations, and surgical prognoses. For these reasons, this expert consensus provides nine recommendations as a reference for standardizing and refining the diagnosis of pathological subtypes of iCCA, mainly based on the 5th edition of the World Health Organization Classification of Tumours of the Digestive System.

4.
Cell Rep ; 35(7): 109127, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010636

RESUMO

The hippocampus is one of two niches in the mammalian brain with persistent neurogenesis into adulthood. The neurogenic capacity of hippocampal neural stem cells (NSCs) declines with age, but the molecular mechanisms of this process remain unknown. In this study, we find that fibroblast growth factor 13 (FGF13) is essential for the post-natal neurogenesis in mouse hippocampus, and FGF13 deficiency impairs learning and memory. In particular, we find that FGF13A, the nuclear isoform of FGF13, is involved in the maintenance of NSCs and the suppression of neuronal differentiation during post-natal hippocampal development. Furthermore, we find that FGF13A interacts with ARID1B, a unit of Brahma-associated factor chromatin remodeling complex, and suppresses the expression of neuron differentiation-associated genes through chromatin modification. Our results suggest that FGF13A is an important regulator for maintaining the self-renewal and neurogenic capacity of NSCs in post-natal hippocampus, revealing an epigenomic regulatory function of FGFs in neurogenesis.


Assuntos
Epigenômica/métodos , Hipocampo/metabolismo , Neurogênese/genética , Isoformas de Proteínas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA