Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140343

RESUMO

Although the gut microbiota and kynurenine (KYN) metabolism have significant protective effects against ischaemic stroke (IS), the exact mechanism has yet to be fully elucidated. Combined serum metabolomics and 16S rRNA gene sequencing were used to reveal the differences between the gut microbiota and metabolites in rats treated with or without blueberry extract. Faecal microbiota transplantation (FMT) was employed to validate the protective role of the gut microbiota in IS. Furthermore, the interaction between Prevotella and IS was also confirmed in patients. Rats with IS experienced neurological impairments accompanied by an impaired intestinal barrier and disturbed intestinal flora, which further contributed to heightened inflammatory responses. Furthermore, Prevotella played a critical role in IS pathophysiology, and a positive correlation between Prevotella and KYN was detected. The role of KYN metabolism in IS was further demonstrated by the finding that IDO was significantly upregulated and that the use of the IDO inhibitor, attenuated KYN metabolic pathway activity and ameliorated neurological damage in rats with IS. Prevotella intervention also significantly improved stroke symptoms and decreasing KYN levels in rats with IS. FMT showed that the beneficial effects of blueberry extract on IS involve gut bacteria, especially Prevotella, which were confirmed by microbiological analyses conducted on IS patients. Moreover, blueberry extract led to significant changes in kynurenic acid levels and tryptophan and IDO levels through interactions with Prevotella. Our study demonstrates for the first time that blueberry extract could modulate "intestinal microecology-KYN metabolism" to improve IS.

2.
Small ; 19(49): e2303498, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37607318

RESUMO

Achieving rapid and effective hemostasis remains a multidisciplinary challenge. Here, distinctive functional carbon dots derived from carbonized Platycladus orientalis (CPO-CDs) are developed using one-step hydrothermal method. The negatively charged surface of CPO-CDs retains partial functional groups from CPO precursor, exhibiting excellent water solubility and high biocompatibility. Both rat liver injury model and tail amputation model have confirmed the rapid and effective hemostatic performance of CPO-CDs on exogenous hemorrhage. Further, on endogenous blood-heat hemorrhage syndrome rat model, CPO-CDs could inhibit hemorrhage and alleviate inflammation response. Interestingly, the excellent hemostasis performance of CPO-CDs is ascribed to activate exogenous coagulation pathway and common coagulation pathway. More importantly, metabolomics of rat plasma suggests that the hemostasis effect of CPO-CDs is closely related to platelet functions. Therefore, the designed in vitro experiments are performed and it is discovered that CPO-CDs significantly promote platelets adhesion, activation, and aggregation. Further, the underlying mechanism investigation suggests that Src/Syk signal pathway plays a key role in platelets activation triggered by CPO-CDs. Overall, CPO-CDs with rapid and excellent hemostatic performance are discovered for the first time, which could be an excellent candidate for the treatment of hemorrhagic diseases.


Assuntos
Carbono , Hemostáticos , Ratos , Animais , Carbono/farmacologia , Coagulação Sanguínea , Hemostasia , Plaquetas/metabolismo , Hemostáticos/farmacologia , Hemorragia/metabolismo
3.
J Therm Biol ; 118: 103744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988914

RESUMO

This study investigated the differences in the thermal preferences of pregnant women during various trimesters and the factors influencing these preferences. The survey was conducted in a hospital waiting room, encompassing the testing of thermal environmental parameters, and the distribution of questionnaires to pregnant women. These questionnaires encompassed various aspects, including basic information, thermal responses, pregnancy diseases, and more. In total, 1388 questionnaires were collected, distributed across the first trimester (225 participants), second trimester (498 participants), and third trimester (665 participants). The findings revealed a notable shift in the thermal preferences of pregnant women as their pregnancies progressed, transitioning from a preference for warmer conditions to a preference for cooler environments. Specifically, the mean thermal preference scores for the first, second, and third trimesters were 0.82, -0.27, and -1.76, respectively. These shifting preferences were associated with various factors, including pregnancy diseases, pre-pregnancy body mass index (PBMI), and exercise habits. Notably, hyperthyroidism, a higher PBMI, and regular exercise were correlated with a preference for cooler conditions, whereas hypothyroidism, anemia, a lower PBMI, and rare exercise were associated with a preference for warmer environments. Furthermore, it was observed that the actual neutral temperatures for pregnant women in the first, second, and third trimesters were 20.3 °C, 19.5 °C, and 19 °C, respectively. By contrast, the predicted neutral temperatures were 23.5 °C for the first and third trimesters and 23.4 °C for the second trimester. This indicated that the Predicted Mean Vote (PMV) model tended to underestimate the acceptability that pregnant women experienced in colder environments. Given the unique thermal preferences of pregnant women, further research is essential to refine thermal comfort parameters and the PMV model tailored specifically to this demographic.


Assuntos
Anemia , Complicações na Gravidez , Gravidez , Humanos , Feminino , Gestantes , Terceiro Trimestre da Gravidez , Segundo Trimestre da Gravidez
4.
Pharmacol Res ; 185: 106515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265555

RESUMO

Long-term elevated blood pressure will increase the cardiac load and lead to myocardial fibrosis (MF). A variety of pathological mechanisms and signal transduction pathways are involved in the process of hypertensive MF, which is of great significance for the occurrence and development of ventricular dilatation and heart failure. MF is the pathological basis of hypertensive heart disease (HHD), and blood pressure control is the key to delaying MF and reducing the occurrence of cardiovascular events. Although a large number of experimental results suggest that anti-MF drug therapy has made great progress, the conclusions of relevant clinical trials are still not optimistic, and it is urgent to find new effective anti-MF medicine. The clinical efficacy of traditional Chinese medicine (TCM) in the treatment of MF in HHD is obvious, and some achievements have been made in the mechanism research. Studies have confirmed that a variety of TCM compound prescription and natural compounds play different degrees of inhibitory effect on MF. In this study, we reviewed the pathogenesis of MF in HHD and the current drug treatment strategies, summarized the latest research progress of TCM in the treatment of MF in HHD, and demonstrated the mechanism of its cardiac protective effect. Finally, we pointed out the limitations of the current study and prospected the future research of TCM.


Assuntos
Cardiomiopatias , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Hipertensão , Humanos , Medicina Tradicional Chinesa , Cardiomiopatias/patologia , Hipertensão/tratamento farmacológico , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico
5.
Molecules ; 27(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431859

RESUMO

Toad venom, a dried product of secretion from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider, has had the therapeutic effects of hepatocellular carcinoma confirmed. Bufalin and cinobufagin were considered as the two most representative antitumor active components in toad venom. However, the underlying mechanisms of this antitumor effect have not been fully implemented, especially the changes in endogenous small molecules after treatment. Therefore, this study was designed to explore the intrinsic mechanism on hepatocellular carcinoma after the cotreatment of bufalin and cinobufagin based on untargeted tumor metabolomics. Ultraperformance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) was performed to identify the absorbed components of toad venom in rat plasma. In vitro experiments were determined to evaluate the therapeutic effects of bufalin and cinobufagin and screen the optimal ratio between them. An in vivo HepG2 tumor-bearing nude mice model was established, and a series of pharmacodynamic indicators were determined, including the body weight of mice, tumor volume, tumor weight, and histopathological examination of tumor. Further, the entire metabolic alterations in tumor after treating with bufalin and cinobufagin were also profiled by UHPLC-MS/MS. Twenty-seven active components from toad venom were absorbed in rat plasma. We found that the cotreatment of bufalin and cinobufagin exerted significant antitumor effects both in vitro and in vivo, which were reflected in inhibiting proliferation and inducing apoptosis of HepG2 cells and thereby causing cell necrosis. After cotherapy of bufalin and cinobufagin for twenty days, compared with the normal group, fifty-six endogenous metabolites were obviously changed on HepG2 tumor-bearing nude mice. Meanwhile, the abundance of α-linolenic acid and phenethylamine after the bufalin and cinobufagin intervention was significantly upregulated, which involved phenylalanine metabolism and α-linolenic acid metabolism. Furthermore, we noticed that amino acid metabolites were also altered in HepG2 tumor after drug intervention, such as norvaline and Leu-Ala. Taken together, the cotreatment of bufalin and cinobufagin has significant antitumor effects on HepG2 tumor-bearing nude mice. Our work demonstrated that the in-depth mechanism of antitumor activity was mainly through the regulation of phenylalanine metabolism and α-Linolenic acid metabolism.


Assuntos
Venenos de Anfíbios , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Camundongos Nus , Espectrometria de Massas em Tandem , Ácido alfa-Linolênico , Neoplasias Hepáticas/tratamento farmacológico , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/química , Bufonidae , Fenilalanina
6.
J Cell Mol Med ; 25(10): 4860-4869, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33733577

RESUMO

Diabetic cardiomyopathy (DCM) is a common diabetic complication characterized by diastolic relaxation abnormalities, myocardial fibrosis and chronic heart failure. Although TGF-ß/Smad3 signalling has been shown to play a critical role in chronic heart disease, the role and mechanisms of Smad3 in DCM remain unclear. We reported here the potential role of Smad3 in the development of DCM by genetically deleting the Smad3 gene from db/db mice. At the age of 32 weeks, Smad3WT-db/db mice developed moderate to severe DCM as demonstrated by a marked increase in the left ventricular (LV) mass, a significant fall in the LV ejection fraction (EF) and LV fractional shortening (FS), and progressive myocardial fibrosis and inflammation. In contrast, db/db mice lacking Smad3 (Smad3KO-db/db) were protected against the development of DCM with normal cardiac function and undetectable myocardial inflammation and fibrosis. Interestingly, db/db mice with deleting one copy of Smad3 (Smad3 ± db/db) did not show any cardioprotective effects. Mechanistically, we found that deletion of Smad3 from db/db mice largely protected cardiac Smad7 from Smurf2-mediated ubiquitin proteasome degradation, thereby inducing IBα to suppress NF-kB-driven cardiac inflammation. In addition, deletion of Smad3 also altered Smad3-dependent miRNAs by up-regulating cardiac miR-29b while suppressing miR-21 to exhibit the cardioprotective effect on Smad3KO-db/db mice. In conclusion, results from this study reveal that Smad3 is a key mediator in the pathogenesis of DCM. Targeting Smad3 may be a novel therapy for DCM.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Fibrose/prevenção & controle , Inflamação/prevenção & controle , Proteína Smad3/fisiologia , Animais , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator de Crescimento Transformador beta
7.
Eur J Neurosci ; 54(6): 6304-6321, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405468

RESUMO

Neonatal hypoxic-ischaemic (HI) injury is a serious complication of neonatal asphyxia and the leading cause of neonatal acute death and chronic neurological injury, and the effective therapeutic method is lacking to improve patients' outcomes. We reported in this study that panax notoginseng saponin (PNS) may provide a treatment option for HI. HI model was established using neonatal Sprague-Dawley rats and then intraperitoneally injected with different dosage of PNS, once a day for 7 days. Histological staining and behavioural evaluations were performed to elucidate the pathological changes and neurobehavioural variation after PNS treatment. We found PNS administration significantly reduced the infarct volume of brain tissues and improved the autonomous activities of neonatal rats, especially with higher dosage. PNS treatment at 40 mg/kg reduced neuronal damage, suppressed neuronal apoptosis and depressed astroglial reactive response. Moreover, the long-term cognitive and motor functions were also improved after PNS treatment at 40 mg/kg. Importantly, PNS treatment elevated the levels of BDNF and TrkB but decreased the expression of p75NTR both in the cortex and hippocampus of HI rats. The therapeutic efficacy of PNS might be correlated with PNS-activated BDNF/TrkB signalling and inactivation of p75NTR expression, providing a novel potential therapy for alleviating HI injury.


Assuntos
Panax notoginseng , Saponinas , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Fatores de Crescimento Neural , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia
8.
Pharmacol Res ; 166: 105510, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610720

RESUMO

Cardiovascular disease (CVD), including heart failure, myocardial fibrosis and myocardial infarction, etc, remains one of the leading causes of mortality worldwide. Evidence shows that miRNA plays an important role in the pathogenesis of CVD. miR-29 family is one of miRNA, and over the past decades, many studies have demonstrated that miR-29 is involved in maintaining the integrity of arteries and in the regulation of atherosclerosis, especially in the process of myocardial fibrosis. Besides, heart failure, myocardial fibrosis and myocardial infarction are inseparable from the regulatory role of miR-29. Here, we comprehensively review recent studies regarding miR-29 and CVD, illustrate the possibility of miR-29 as a potential marker for prevention, treatment and prognostic observation.


Assuntos
Doenças Cardiovasculares/genética , MicroRNAs/genética , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Fibrose , Regulação da Expressão Gênica , Humanos , MicroRNAs/análise , Miocárdio/patologia , Prognóstico
9.
Hum Genomics ; 13(1): 67, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829291

RESUMO

BACKGROUND: Aging is believed to have a close association with cardiovascular diseases, resulting in various pathological alterations in blood vessels, including vascular cell phenotypic shifts. In aging vessels, the microRNA(miRNA)-mediated mechanism regulating the vascular smooth muscle cell (VSMC) phenotype remains unclarified. MiRNA microarray was used to compare the expressions of miRNAs in VSMCs from old rats (oVSMCs) and young rats (yVSMCs). Quantitative reverse transcription real-time PCR (qRT-PCR) and small RNA transfection were used to explore the miR-542-3p expression in oVSMCs and yVSMCs in vitro. Calcification induction of yVSMCs was conducted by the treatment of ß-glycerophosphate (ß-GP). Alizarin red staining was used to detect calcium deposition. Western blot and qRT-PCR were used to investigate the expression of the smooth muscle markers, smooth muscle 22α (SM22α) and calponin, and the osteogenic markers, osteopontin (OPN), and runt-related transcription factor 2 (Runx2). Lentivirus was used to overexpress miR-542-3p and bone morphogenetic protein 7 (BMP7) in yVMSCs. Luciferase reporter assay was conducted to identify the target of miR-542-3p. RESULTS: Compared with yVSMCs, 28 downregulated and 34 upregulated miRNAs were identified in oVSMCs. It was confirmed by qRT-PCR that oVSMC expressed four times lower miR-542-3p than yVSMCs. Overexpressing miR-542-3p in yVSMCs suppressed the osteogenic differentiation induced by ß-GP. Moreover, miR-542-3p targets BMP7 and overexpressing BMP7 in miR-542-3p-expressing yVSMCs reverses miR-542-3p's inhibition of osteogenic differentiation. CONCLUSIONS: miR-542-3p regulates osteogenic differentiation of VSMCs through targeting BMP7, suggesting that the downregulation of miR-542-3p in oVSMCs plays a crucial role in osteogenic transition in the aging rat.


Assuntos
Envelhecimento/genética , Proteína Morfogenética Óssea 7/metabolismo , Regulação para Baixo/genética , MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Osteogênese/genética , Animais , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Glicerofosfatos/farmacologia , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos
10.
Phytother Res ; 34(12): 3249-3261, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32619059

RESUMO

Memory loss is a complication of diabetes which requires new approaches to its treatment. Shengmai San (SMS) is a famous traditional Chinese formula containing Panax ginseng, Ophiopogon japonicas, and Schisandra chinensis, whereas Radix puerariae has many reported pharmacological uses. In this study the combination, as Jiawei SMS (J-SMS) was screened for its ability to reverse diabetes-associated cognitive decline in rats. This was assessed behaviorally in diabetic rats (Streptozotocin, 45 mg/kg), with biochemical and western blot analysis (Akt and CREB). Diabetic rats showed fasting blood glucose (FBG) in the range of 13-15 mM throughout the study. J-SMS (0.5, 1.5, 4.5 g/kg) treatment significantly improved learning and memory deficit among diabetic rats as evidenced by preference for novel object, reduced escape latency and increased number of platform crossings (p < .05) in the NORT and MWM tests. Treatment with J-SMS also significantly improved the histopathological changes in the diabetic brain and increased the protein expression of AKT and CREB, required for proper memory function (p < .01). This study highlighted that J-SMS can reverse reference and working memory deficit among diabetic rats by modulating AKT and CREB proteins activation. Thus, J-SMS formulation might be possible candidate for further development.


Assuntos
Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Pueraria/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/psicologia , Modelos Animais de Doenças , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/química , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
11.
Zhongguo Zhong Yao Za Zhi ; 45(4): 709-714, 2020 Feb.
Artigo em Zh | MEDLINE | ID: mdl-32237469

RESUMO

Guided by the basic theory of traditional Chinese medicine and using modern scientific methods, Dao-di herbs pharmacology studies the nature, performance, interaction with the body and its clinical application.It is a bridge between the basic research and clinical application of Dao-di herbs. It can objectively describe the law of efficacy of Dao-di herbs, scientifically explain the mechanism of efficacy of Dao-di herbs, explore and establish the standards and methods of Dao-di herbs based on biological effect and clinical efficacy, and provide scientific basis for the special properties, pharmacology and clinical value of Dao-di herbs.Furthermore, we put forward a new idea of building the standard of Dao-di herbs based on the curative effect rather than the origin.The Dao-di herbs standard should come from the systematic research of traditional Dao-di herbs producing areas and form a new characteristic system, through the extraction of environmental, genetic, character, chemical, pharmacological and other characteristics.This standard originates from the tradition, but it is higher than the tradition. It may not have the origin meaning of strict administrative division, but it can better reflect the pharmacological characteristics and excellent clinical value of Dao-di herbs.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/normas , Plantas Medicinais/química , China , Medicina Tradicional Chinesa
12.
Zhongguo Zhong Yao Za Zhi ; 40(22): 4452-5, 2015 Nov.
Artigo em Zh | MEDLINE | ID: mdl-27097423

RESUMO

OBJECTIVE: To establish the migraine rheumatism stasis syndrome animal model. METHOD: The rat migraine rheumatism stasis syndrome animal model was established through rheumatism stimulation with manual climate box, 5-HT reduction caused by reserpine and local cerebral vasospasm. General vital signs (activity, weight, eye gum, hair, feeding, excrement), head scratch frequency and image collection were observed to analyze the changes in biological signs of stasis syndrome (tongue image RGB), thrombin and serotonin of model rats. RESULT: The reserpine group and the reserpine plus rheumatism model group showed significant reduction in blood coagulation time, pain threshold and 5-HT content in blood and brain (P < 0.01); the reserpine plus rheumatism model group showed an increase in eye gum and decreases in activity, feeding, with thin sloppy stool. According to the tough RGB values, the control group showed light red toughs, the reserpine group showed dark purple toughs, the reserpine plus rheumatism model group showed gray toughs, with notable differences in tough RGB values in all three group. CONCLUSION: The rheumatism stimulation with manual climate box, 5-HT reduction caused by reserpine and local cerebral vasospasm can be used to induce the migraine rheumatism stasis syndrome animal model, but its modeling assessment method and process shall be further improved.


Assuntos
Modelos Animais de Doenças , Transtornos de Enxaqueca/diagnóstico , Ratos , Doenças Reumáticas/diagnóstico , Animais , Circulação Sanguínea , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Medicina Tradicional Chinesa , Transtornos de Enxaqueca/fisiopatologia , Ratos Sprague-Dawley , Doenças Reumáticas/fisiopatologia
13.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 34(3): 355-8, 2014 Mar.
Artigo em Zh | MEDLINE | ID: mdl-24758090

RESUMO

Aerospace medicine has paid more and more attention to abnormal changes of physiological functions induced by weightlessness and studies on their prevention during space flight. In this paper, the effect of space weightlessness on cognitive functions was introduced. We tried to analyze the correlation between the cognitive function changes and relevant Chinese medical syndromes, thus providing a potential available way to prevent and treat weightlessness induced cognitive deficit during space flight.


Assuntos
Medicina Aeroespacial , Cognição , Medicina Tradicional Chinesa , Ausência de Peso , Humanos
14.
Heliyon ; 10(10): e30983, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38770346

RESUMO

Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, ß-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1ß, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1ß, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1ß, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.

15.
Rev Cardiovasc Med ; 25(7): 269, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39139442

RESUMO

Background: No studies have updated the epidemiologic changes in non-rheumatic degenerative mitral valve disease (DMVD) since 2019, thus this study utilized data from the Global Study of Diseases, Injuries, and Risk Factors 2019 (GBD2019) to assess the burden of DMVD in 204 countries and territories over the period 1990-2019, as well as changes in the prevalence, incidence, deaths and changes in disability-adjusted life years (DALYs). Methods: Using the results from the GBD2019, analyzing the incidence, prevalence, deaths, and DALYs rates, as well as their age-standardized rates (ASR). Based on the human development index (HDI), the socio-demographic index (SDI), age, and sex. Results: In 2019, there were 24.229 million (95% uncertainty interval (UI) 23.081-25.419 million) existing cases of DMVD worldwide, with 1.064 million (95% UI 1.010-1.122 million) new cases and 0.034 million (95% UI 0.028-0.043 million) deaths, and 0.883 million (95% UI 0.754-1.092 million) disability-adjusted life years. The incidence, prevalence, deaths, and DALYs of DMVD and their ASR showed significant differences across sex, age groups, regions, and countries from 1990 to 2019. It is projected that by 2030, the incidence of DMVD in females will be 0.72 million with an ASR of 15.59 per 100,000 population, 0.51 million in males with an ASR of 11.75 per 100,000 population, and a total incidence of 1.23 million with an ASR of 14.03 per 100,000 population. Conclusions: DMVD remains a significant public health problem that cannot be ignored, despite a decreasing trend in the ASR of global incidence, prevalence, deaths and DALYs from 1990 to 2019. However, we note an adverse development trend in countries with low socio-demographic indexes and seriously aging societies, and sex inequality is particularly prominent. This indicates the need to reposition current prevention and treatment strategies, with some national health administrations developing corresponding strategies for preventing an increase in DMVD based on local health, education, economic conditions, sex differences, and age differences.

16.
Aging (Albany NY) ; 16(7): 5905-5915, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517394

RESUMO

Dysfunction of tight junctions such as zonula occludens protein-1 (ZO-1)-associated aggravation of blood-brain barrier (BBB) permeability plays an important role in the progression of stroke. Cepharanthine (CEP) is an extract from the plant Stephania cepharantha. However, the effects of CEP on stroke and BBB dysfunction have not been previously reported. In this study, we report that CEP improved dysfunction in neurological behavior in a middle cerebral artery occlusion (MCAO) mouse model. Importantly, CEP suppressed blood-brain barrier (BBB) hyperpermeability by increasing the expression of ZO-1. Notably, we found that CEP inhibited the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in the cortex of MCAO mice. Additionally, the results of in vitro experiments demonstrate that treatment with CEP ameliorated cytotoxicity of human bEnd.3 brain microvascular endothelial cells against hypoxia/reperfusion (H/R). Also, CEP attenuated H/R-induced aggravation of endothelial permeability in bEND.3 cells by restoring the expression of ZO-1. Further study proved that the protective effects of CEP are mediated by inhibition of VEGF-A and VEGFR2. Based on the results, we conclude that CEP might possess a therapeutic prospect in stroke through protecting the integrity of the BBB mediated by the VEGF/VEGFR2/ZO-1 axis.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Barreira Hematoencefálica , Transdução de Sinais , Acidente Vascular Cerebral , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteína da Zônula de Oclusão-1 , Animais , Proteína da Zônula de Oclusão-1/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Humanos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Linhagem Celular
17.
Braz J Med Biol Res ; 57: e13388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958365

RESUMO

Jiawei Xinglou Chengqi Granule (JXCG) is an effective herbal medicine for the treatment of ischemic stroke (IS). JXCG has been shown to effectively ameliorate cerebral ischemic symptoms in clinical practice, but the underlying mechanisms are unclear. In this study, we investigated the mechanisms of action of JXCG in the treatment of IS by combining metabolomics with network pharmacology. The chemical composition of JXCG was analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS) untargeted metabolomics were used to identify differential metabolites within metabolic pathways. Network pharmacology was applied to mine potential targets of JXCG in the treatment of IS. The identified key targets were validated by constructing an integrated network of metabolomics and network pharmacology and by molecular docking using Cytoscape. The effect of JXCG on IS was evaluated in vivo, and the predicted targets and pathways of JXCG in IS therapy were assessed using immunoblotting. Combining metabolomics and network pharmacology, we identified the therapeutic targets of JXCG for IS. Notably, JXCG lessened neuronal damage and reduced cerebral infarct size in rats with IS. Western blot analysis showed that JXCG upregulated PRKCH and downregulated PRKCE and PRKCQ proteins. Our combined network pharmacology and metabolomics findings showed that JXCG may have therapeutic potential in the treatment of IS by targeting multiple factors and pathways.


Assuntos
Medicamentos de Ervas Chinesas , AVC Isquêmico , Metabolômica , Farmacologia em Rede , Animais , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Masculino , Ratos , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Modelos Animais de Doenças , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
18.
Cell Signal ; 123: 111355, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173854

RESUMO

Liver fibrosis is a chronic pathological process in which the abnormal proliferation of connective tissue is induced by various pathogenic factors. During the process of fibrosis, excessive angiogenesis is observed. Physiological angiogenesis has the potential to impede the progression of liver fibrosis through augmenting matrix metalloenzyme activity; however, pathological angiogenesis can exacerbate liver fibrosis by promoting collagen accumulation. Therefore, a key scientific research focus in the treatment of liver diseases is to search for the "on-off" mechanism that regulates angiogenesis from normal proliferation to pathological proliferation. In this study, we found that excessive angiogenesis appeared during the initial phase of hepatic fibrosis without mesenchymal characteristics. In addition, angiogenesis accompanied by significant endothelial-to-mesenchymal transition (EndMT) was observed in mice after the intraperitoneal injection of angiotensin II (Ang II). Interestingly, the changes in Yes-associated protein (YAP) activity in endothelial cells (ECs) can affect the regulation of angiogenesis by Ang II. The results of in vitro experiments revealed that the regulatory influence of Ang II on ECs was significantly attenuated upon suppression of YAP activity. Furthermore, the function of Ang II in regulating angiogenesis during fibrosis was investigated in liver-specific transgenic mice. The results revealed that Ang II gene deletion could restrain liver fibrosis and EndMT. Meanwhile, Ang II deletion downregulated the profibrotic YAP signaling pathway in ECs. The small molecule AT1R agonist olmesartan targeting Ang II-YAP signaling could also alleviate liver fibrosis. In conclusion, this study identified Ang II as a pivotal regulator of EndMT during the progression of liver fibrosis and evaluated the therapeutic effect of the Ang II-targeted drug olmesartan on liver fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Angiotensina II , Cirrose Hepática , Neovascularização Patológica , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Angiotensina II/farmacologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Proteínas de Sinalização YAP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Neovascularização Patológica/metabolismo , Humanos , Via de Sinalização Hippo , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Camundongos Transgênicos , Proteínas de Ciclo Celular/metabolismo , Imidazóis/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Tetrazóis/farmacologia , Angiogênese
19.
J Inflamm Res ; 17: 1643-1658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504697

RESUMO

Background: Intracerebral hemorrhage (ICH), a devastating form of stroke, is characterized by elevated morbidity and mortality rates. Neuroinflammation is a common occurrence following ICH. Mesenchymal stem cells (MSCs) have exhibited potential in treating brain diseases due to their anti-inflammatory properties. However, the therapeutic efficacy of MSCs is limited by the intense inflammatory response at the transplantation site in ICH. Hence, enhancing the function of transplanted MSCs holds considerable promise as a therapeutic strategy for ICH. Notably, the iron-quercetin complex (IronQ), a metal-quercetin complex synthesized through coordination chemistry, has garnered significant attention for its biomedical applications. In our previous studies, we have observed that IronQ exerts stimulatory effects on cell growth, notably enhancing the survival and viability of peripheral blood mononuclear cells (PBMCs) and MSCs. This study aimed to evaluate the effects of pretreated MSCs with IronQ on neuroinflammation and elucidate its underlying mechanisms. Methods: The ICH mice were induced by injecting the collagenase I solution into the right brain caudate nucleus. After 24 hours, the ICH mice were randomly divided into four subgroups, the model group (Model), quercetin group (Quercetin), MSCs group (MSCs), and pretreated MSCs with IronQ group (MSCs+IronQ). Neurological deficits were re-evaluated on day 3, and brain samples were collected for further analysis. TUNEL staining was performed to assess cell DNA damage, and the protein expression levels of inflammatory factors and the cGAS-STING signaling pathway were investigated and analyzed. Results: Pretreated MSCs with IronQ effectively mitigate neurological deficits and reduce neuronal inflammation by modulating the microglial polarization. Moreover, the pretreated MSCs with IronQ suppress the protein expression levels of the cGAS-STING signaling pathway. Conclusion: These findings suggest that pretreated MSCs with IronQ demonstrate a synergistic effect in alleviating neuroinflammation, thereby improving neurological function, which is achieved through the inhibition of the cGAS-STING signaling pathway.

20.
Heliyon ; 10(1): e23077, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163129

RESUMO

Context: Cardiomyocyte hypertrophy due to hemodynamic overload eventually leads to heart failure. Hirudin has been widely used in the treatment of cardiovascular diseases and NLRP3 inflammasome was proven to induce cardiomyocyte pyroptosis. However, the mechanism by which it inhibits cardiomyocyte hypertrophy remains unclear. Objective: To explore the mechanism of hirudin inhibiting cardiomyocyte hypertrophy based on NLRP3 inflammasome activation and mitophagy. Materials & methods: 1 µM AngII was used for cardiac hypertrophy modeling in H9C2 cells, and cell viability was quantified by CCK-8 assay to screen the appropriate action concentrations of hirudin. After that, we cultured AngII induced-H9C2 cells for 24 h with 0, 0.3, 0.6, and 1.2 mM hirudin, respectively. Next, we marked H9C2 cells with phalloidine and observed them using fluorescence microscope. IL-1ß, IL-18, IL-6, TNF-α, ANP, BNP, ß-MHC, and mtDNA were analyzed by qRT-PCR; ROS were quantified by Flow cytometry; SOD, MDA, and GSH-Px were detected by ELISA; and proteins including NLRP3, ASC, caspase-1, pro-caspase-1, IL-1ß, IL-18, PINK-1, Parkin, beclin-1, LC3-Ⅰ, LC3-Ⅱ, p62, were quantified by western blotting. Results: It was discovered that hirudin reduced the superficial area of AngII-induced H9C2 cells and inhibited the AngII-induced up-regulation of ANP, BNP, and ß-MHC. Besides, hirudin down-regulated the expressions of NLRP3 inflammasome-related cytokines, containing IL-1ß, IL-18, IL-6, TNF-α. It also down-regulated the expression of mtDNA and ROS, decreased the expression levels of NLRP3 inflammasome activation related proteins, including NLRP3, ASC, caspase-1, pro-caspase-1, IL-1ß, IL-18; and increased the expressions of PINK-1, Parkin, beclin-1, LC3-Ⅱ/LC3-Ⅰ, p62 in AngII-induced H9C2 cells. Discussion: Hirudin promoted the process of mitophagy, inhibited the development of inflammation and oxidative stress, and inhibited the activation of the NLRP3 inflammasome and the PINK-1/Parkin pathway. Conclusion: Hirudin has the activity to suppress cardiac hypertrophy may benefit from the inhibition of NLRP3 inflammasome and activating of PINK-1/Parkin related-mitophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA