Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nano Lett ; 23(22): 10512-10521, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930183

RESUMO

Two-dimensional (2D) bismuthene is predicted to possess intriguing physical properties, but its preparation remains challenging due to the high surface energy constraint. Herein, we report a sandwiched epitaxy growth strategy for the controllable preparation of 2D bismuthene between a Cu foil substrate and a h-BN covering layer. The top h-BN layer plays a crucial role in suppressing the structural transformation of bismuthene and compensating for the charge transfer from the bismuthene to the Cu(111) surface. The bismuthene nanoflakes present a superior thermal stability up to 500 °C in air, attributed to the passivation effect of the h-BN layer. Moreover, the bismuthene nanoflakes demonstrate an ultrahigh faradaic efficiency of 96.3% for formate production in the electrochemical CO2 reduction reaction, which is among the highest reported for Bi-based electrocatalysts. This study offers a promising approach to simultaneously synthesize and protect 2D bismuthene nanoflakes, which can be extended to other 2D materials with a high surface energy.

2.
Nano Lett ; 23(22): 10140-10147, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930176

RESUMO

Massive production of practical metal or alloy based electrocatalysts for electrocatalytic CO2 reduction reaction is usually limited by energy-extensive consumption, poor reproducibility, and weak adhesion on electrode substrates. Herein, we report the ultrafast thermal shock synthesis and porosity engineering of free-standing Cu-Bi bimetallic nanofoam electrocatalysts with 3D hierarchical porous structure and easily adjustable compositions. During the thermal shock process, the rapid heating and cooling steps in several seconds result in strong interaction between metal nanopowders to form multiphase nanocrystallines with abundant grain boundaries and metastable CuBi intermetallic phase. The subsequent porosity engineering process via acid etching and electroreduction creates highly porous Cu-Bi structures that can increase electrochemically active surface area and facilitate mass/charge transfer. Among the Cu-Bi nanofoam electrodes with different Cu/Bi ratios, the Cu4Bi nanofoam exhibited the highest formate selectivity with a Faradaic efficiency of 92.4% at -0.9 V (vs reversible hydrogen electrode) and demonstrated excellent operation stability.

3.
Nano Lett ; 22(8): 3340-3348, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412833

RESUMO

Designing earth-abundant electrocatalysts toward highly efficient CO2 reduction has significant importance to decrease the global emission of greenhouse gas. Herein, we propose an efficient strategy to anchor non-noble metal single atoms on Zr6-cluster-porphyrin framework hollow nanocapsules with well-defined and abundant metal-N4 porphyrin sites for efficient electrochemical CO2 reduction. Among different transition metal single atoms (Mn, Fe, Co, Ni, and Cu), Co single-atom anchored Zr6-cluster-porphyrin framework hollow nanocapsules demonstrated the highest activity and selectivity for CO production. The rich Co-N4 active centers and hierarchical porous structure contribute to enhanced CO2 adsorption capability and moderate binding strength of reaction intermediates, thus facilitating *CO desorption and CO2-to-CO conversion. The Co-anchored nanocapsules maintain high efficiency and well-preserved stability during long-term electrocatalysis tests. Moreover, the Co-anchored nanocapsules exhibit a remarkable solar-to-CO energy conversion efficiency of 12.5% in an integrated solar-driven CO2 reduction/O2 evolution electrolysis system when powered by a custom large-area [Cs0.05(FA0.85MA0.15)0.95]Pb0.9(I0.85Br0.15)3-based perovskite solar cell.

4.
Nano Lett ; 21(6): 2650-2657, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33710893

RESUMO

Electrocatalytic CO2 reduction reaction is regarded as an intriguing route for producing renewable chemicals and fuels, but its development is limited by the lack of highly efficient and stable electrocatalysts. Herein, we propose the pipet-like bismuth (Bi) nanorods semifilled in nitrogen-doped carbon nanotubes (Bi-NRs@NCNTs) for highly selective electrocatalytic CO2 reduction. Benefited from the prominent capillary and confinement effects, the Bi-NRs@NCNTs act as nanoscale conveyors that can significantly facilitate the mass transport, adsorption,and concentration of reactants onto the active sites, realizing rapid reaction kinetics and low cathodic polarization. The spatial encapsulation and separation by the NCNT shells prevents the self-aggregation and surface oxidation of Bi-NRs, increasing the dispersity and stability of the electrocatalyst. As a result, the Bi-NRs@NCNTs exhibit high activity and durable catalytic stability for CO2-to-formate conversion over a wide potential range. The Faradaic efficiency for formate production reaches 90.9% at a moderate applied potential of -0.9 V vs reversible hydrogen electrode (RHE).

5.
Nano Lett ; 21(20): 8693-8700, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34608804

RESUMO

The conversion of chemically inert carbon dioxide and its photoreduction to value-added products have attracted enormous attention as an intriguing prospect for utilizing the principal greenhouse gas CO2. Herein, we explore the use of Ag25 clusters with well-defined atomic structures for high-selectivity photocatalytic hydrogenation of CO2 to methane. Ag25 clusters, with molecular-like properties and surface plasmon resonance, exhibit competitive catalytic activity for light-driven CO2 reduction that yield an almost 100% product selectivity of methane at a relatively mild temperature (100 °C). DFT calculations reveal that the absorption of CO2 on Ag25 clusters is energetically favorable. The methanation of the Ag25 cluster catalyst has been investigated by operando infrared spectroscopy, verifying that methane was produced through a -H-assisted multielectron reaction pathway via the transformation of formyl and formaldehyde species to form surface CHx. This work presents a highly efficient strategy for high-performance CO2 methanation via well-defined metal cluster catalysts.

6.
J Ind Microbiol Biotechnol ; 47(3): 343-354, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140930

RESUMO

In this study, we constructed a coculture consortium comprising engineered Pseudomonas putida KT2440 and Escherichia coli MG1655. Provision of "related" carbon sources and synthesis of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were separately assigned to these strains via a modular construction strategy. To avoid growth competition, a preference for the use of a carbon source was constructed. Further, the main intermediate metabolite acetate played an important role in constructing the expected "nutrition supply-detoxification" relationship between these strains. The coculture consortium showed a remarkable increase in the mcl-PHA titer (0.541 g/L) with a glucose-xylose mixture (1:1). Subsequently, the titer of mcl-PHA produced by the coculture consortium when tested with actual lignocellulosic hydrolysate (0.434 g/L) was similar to that achieved with laboratory sugars' mixture (0.469 g/L). These results indicate a competitive potential of the engineered E. coli-P. putida coculture consortium for mcl-PHA production with lignocellulosic hydrolysate.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas putida/metabolismo , Xilose/metabolismo , Técnicas de Cocultura , Escherichia coli/genética , Pseudomonas putida/genética
7.
J Ind Microbiol Biotechnol ; 46(6): 793-800, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30864026

RESUMO

Pseudomonas putida was metabolically engineered to produce medium chain length polyhydroxyalkanoate (mcl-PHA) from acetate, a promising carbon source to achieve cost-effective microbial processes. As acetate is known to be harmful to cell growth, P. putida KT2440 was screened from three Pseudomonas strains (P. putida KT2440, P. putida NBRC14164, and P. aeruginosa PH1) as the host with the highest tolerance to 10 g/L of acetate in the medium. Subsequently, P. putida KT2440 was engineered by amplifying the acetate assimilation pathway, including overexpression of the acs (encoding acetyl-CoA synthetase) route and construction of the ackA-pta (encoding acetate kinase-phosphotransacetylase) pathway. The acs overexpressing P. putida KT2440 showed a remarkable increase of mcl-PHA titer (+ 92%), mcl-PHA yield (+ 50%), and cellular mcl-PHA content (+ 43%) compared with the wild-type P. putida KT2440, which indicated that acetate could be a potential substrate for biochemical production of mcl-PHA by engineered P. putida.


Assuntos
Acetatos/metabolismo , Proteínas de Bactérias/metabolismo , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas putida/metabolismo , Técnicas de Cultura Celular por Lotes , Pseudomonas putida/crescimento & desenvolvimento
8.
Int Immunopharmacol ; 142(Pt B): 113159, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303541

RESUMO

BACKGROUND: The role of BMAL1 in various diseases remains unclear, particularly its impact on sepsis-induced acute kidney injury (AKI). This study aims to investigate the role of BMAL1 in sepsis-induced AKI and its potential effects on cell ferroptosis. Initially, we assessed BMAL1 expression levels in mice treated with sepsis-induced AKI (via LPS injection) and in LPS-stimulated renal tubular epithelial cells. Subsequently, we explored the correlation between BMAL1 and ferroptosis using sequencing technology, validating our findings throughout experimental approaches. To further elucidate BMAL1's specific effects on AKI-related ferroptosis, we constructed BMAL1 overexpression models in mice and cells, analysing its impact on AKI and ferroptosis both in vivo and in vitro. Furthermore, using transcriptome sequencing technology, we identified key BMAL1-regulated genes and their associated biological pathways, validating these findings through in vivo and in vitro experiments. RESULTS: Our findings indicate decreased BMAL1 expression in sepsis-induced AKI. BMAL1 overexpression effectively mitigated renal tubular injury by reducing ferroptosis levels in renal tubular epithelial cells. Using transcriptome sequencing and ChIP-qPCR technology, we identified YAP as a target of BMAL1. The overexpression of BMAL1 significantly reduced the transcriptional activity of YAP and inhibited the Hippo signalling pathway. Treatment with the Hippo inhibitor Verteporfin (VP) reversed the BMAL1-downregulation-induced damage. Additionally, our study revealed that YAP positively regulates ACSL4 gene expression and its downstream signalling pathways. CONCLUSION: This study demonstrates that BMAL1 overexpression alleviates renal tubular epithelial cell injury and ferroptosis by inhibiting YAP expression and the Hippo pathway, thereby exerting protective effects in sepsis-induced AKI. These findings underscore the therapeutic potential of targeting BMAL1 in managing sepsis-induced AKI.

9.
Biomedicines ; 12(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39200296

RESUMO

Cancers of the urinary system account for 13.1% of new cancer cases and 7.9% of cancer-related deaths. Of them, renal cancer, bladder cancer, and prostate cancer are most prevalent and pose a substantial threat to human health and the quality of life. Prostate cancer is the most common malignant tumor in the male urinary system. It is the second most common type of malignant tumor in men, with lung cancer surpassing its incidence and mortality. Bladder cancer has one of the highest incidences and is sex-related, with men reporting a significantly higher incidence than women. Tumor development in the urinary system is associated with factors, such as smoking, obesity, high blood pressure, diet, occupational exposure, and genetics. The treatment strategies primarily involve surgery, radiation therapy, and chemotherapy. Cholesterol metabolism is a crucial physiological process associated with developing and progressing urinary system tumors. High cholesterol levels are closely associated with tumor occurrence, invasion, and metastasis. This warrants thoroughly investigating the role of cholesterol metabolism in urinary system tumors and identifying novel treatment methods for the prevention, early diagnosis, targeted treatment, and drug resistance of urinary system tumors.

10.
Cell Prolif ; : e13677, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898750

RESUMO

Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.

11.
Front Immunol ; 15: 1423784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238645

RESUMO

Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.


Assuntos
Comunicação Celular , Nefropatias Diabéticas , Exossomos , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Humanos , Animais , Exossomos/metabolismo
12.
Environ Sci Pollut Res Int ; 28(20): 25993-26006, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33481199

RESUMO

The paper aims to investigate the influencing factors that drive the temporal and spatial differences of CO2 emissions for the transportation sector in China. For this purpose, this study adopts a Logistic Mean Division Index (LMDI) model to explore the driving forces of the changes for the transport sector's CO2 emissions from a temporal perspective during 2000-2017 and identifies the key factors of differences in the transport sector's CO2 emissions of China's 15 cities in four key years (i.e., 2000, 2005, 2010, and 2017) using a multi-regional spatial decomposition model (M-R). Based on the empirical results, it was found that the main forces for affecting CO2 emissions of the transport sector are not the same as those from temporal and spatial perspectives. Temporal decomposition results show that the income effect is the dominant factor inducing the increase of CO2 emissions in the transport sector, while the transportation intensity effect is the main factor for curbing the CO2 emissions. Spatial decomposition results demonstrate that income effect, energy intensity effect, transportation intensity effect, and transportation structure effect are important factors which result in enlarging the differences in city-level CO2 emissions. In addition, the less-developed cities and lower energy efficiency cities have greater potential to reduce CO2 emissions of the transport sector. Understanding the feature of CO2 emissions and the influencing factors of cities is critical for formulating city-level mitigation strategies of the transport sector in China. Overall, it is expected that the level of economic development is the main factor leading to the differences in CO2 emissions from a spatial-temporal perspective.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Dióxido de Carbono/análise , China , Cidades , Meios de Transporte
13.
Nanoscale ; 11(21): 10439-10445, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31112193

RESUMO

N2 fixation is one of the most important chemical reactions in the ecosystem of our planet. However, the industrial Haber-Bosch ammonia synthesis process is restricted by harsh reaction conditions (350-550 °C, 150-350 atm) and undesirable environmental effects (a large amount of CO2 emission). Photocatalytic N2 fixation is promising for achieving sustainable ammonia synthesis under ambient conditions with lower energy input and less environmental issues. However, the known photocatalysts for N2 reduction under mild conditions still face the great challenge of very low energy conversion efficiency. Herein, we report a facile solution-phase method to prepare the heterojunctions based on n-type Bi2MoO6 nanorods and oxygen-vacancy-rich p-type BiOBr nanosheets (Bi2MoO6/OV-BiOBr). Originating from the formation of p-n junctions and suitable bandgap configuration, the Bi2MoO6/OV-BiOBr heterojunctions exhibit effective light utilization and photogenerated electron-hole separation properties. Moreover, it is confirmed that the oxygen vacancies on BiOBr nanosheets are propitious to the adsorption and activation of N2 molecules. Benefiting from these merits, the Bi2MoO6/OV-BiOBr heterojunctions exhibit improved photocatalytic performance for N2 conversion to ammonia without any noble metal co-catalysts and sacrificial reagents under ambient conditions.

14.
Nanoscale ; 11(18): 9053-9060, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025687

RESUMO

Solar-driven photocatalytic overall water splitting is regarded as one of the ideal strategies to generate renewable hydrogen energy without the initiation of environmental issues. However, there are still a few remaining challenges to develop wide-light-absorption and stable photocatalysts for the simultaneous production of H2 and O2 in pure water without sacrificial reagents. Herein, we report the design and preparation of Z-scheme TiO2/ZnTe/Au nanocorncob heterojunctions by homogeneously decorating Au nanoparticles onto the surface of core-shell TiO2/ZnTe coaxial nanorods for highly efficient overall water splitting. With the appropriate band structure of TiO2/ZnTe heterojunctions and the surface plasmon resonance enhancement of Au nanoparticles, the well-designed TiO2/ZnTe/Au nanocorncob heterojunctions can synergistically make effective utilization of broad-range solar light illunimation and enhance the separation efficency of electron-hole pairs, as evidenced by UV-Vis absorption and time-resolved photoluminescence spectroscopy. Photoelectrochemical characterization confirms that the water-splitting reaction on TiO2/ZnTe/Au nanocorncobs is mainly carried out via a two-electron/two-electron transfer process with an intermediate product of H2O2. As a result, the TiO2/ZnTe/Au nanocorncob photocatalyst can generate H2 and O2 with a stoichiometric ratio of 2 : 1 under light irradiation without any sacrificial agents, exhibiting a high H2 production rate of 3344.0 µmol g-1 h-1 and a solar-to-hydrogen (STH) efficiency of 0.98%. Moreover, the TiO2/ZnTe/Au nanocorncob heterojunctions show high stability and well-preserved morphological integrity after long-term photocatalytic tests. This study provides a prototype route to produce clean hydrogen energy from only sunlight, pure water, and rationally-designed heterojunction photocatalysts.

15.
Adv Sci (Weinh) ; 5(1): 1700275, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375961

RESUMO

The worldwide unrestrained emission of carbon dioxide (CO2) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal-organic complexes, metals, metal alloys, inorganic metal compounds and carbon-based metal-free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO-), monoxide carbon (CO), formaldehyde (HCHO), methane (CH4), ethylene (C2H4), methanol (CH3OH), ethanol (CH3CH2OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO2 electroreduction.

16.
Bioresour Technol ; 102(3): 3642-4, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21134741

RESUMO

The pyrolysis behavior of cellulose has been investigated by using thermogravimetric analysis (TGA). The non-isothermal TGA data obtained at different heating rates have been analyzed simultaneously. Pattern Search Method has been proposed for the estimation of the model parameter values. Predicted values from the logistic distributed activation energy model have been compared with the experimental data and the results have indicated that the model describes the kinetic behavior of cellulose pyrolysis very well. The mean value and standard deviation of the logistic activation energy distribution for cellulose pyrolysis are found to be 258.5718 kJ mol(-1) and 2.6601 kJ mol(-1), the reaction order is 1.1101 and the k(0) is 1.6218×10(17) s(-1).


Assuntos
Celulose/química , Temperatura Alta , Modelos Químicos , Simulação por Computador , Cinética , Modelos Logísticos , Termogravimetria
17.
Bioresour Technol ; 102(2): 1556-61, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20846853

RESUMO

A new distributed activation energy model is presented using the logistic distribution to mathematically represent the pyrolysis kinetics of complex solid fuels. A numerical parametric study of the logistic distributed activation energy model is conducted to evaluate the influences of the model parameters on the numerical results of the model. The parameters studied include the heating rate, reaction order, frequency factor, mean of the logistic activation energy distribution, standard deviation of the logistic activation energy distribution. The parametric study addresses the dependence on the forms of the calculated α-T and dα/dT-T curves (α: reaction conversion, T: temperature). The study results would be very helpful to the application of the logistic distributed activation energy model, which is the main subject of the next part of this series.


Assuntos
Modelos Logísticos , Cinética , Probabilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA