Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319085

RESUMO

Ozone (O3) pollution has a negative effect on the public health and crop yields. Accurate diagnosis of O3 production sensitivity and targeted reduction of O3 precursors [i.e., nitrogen oxides (NOx) or volatile organic compounds (VOCs)] are effective for mitigating O3 pollution. This study assesses the indicative roles of the surface formaldehyde-to-NO2 ratio (FNR) and glyoxal-to-NO2 ratio (GNR) on surface O3-NOx-VOC sensitivity based on a meta-analysis consisting of multiple field observations and model simulations. Thresholds of the FNR and GNR are determined using the relationship between the relative change of the O3 production rate and the two indicators, which are 0.55 ± 0.16 and 1.0 ± 0.3 for the FNR and 0.009 ± 0.003 and 0.024 ± 0.007 for the GNR. The sensitivity analysis indicated that the surface FNR is likely to be affected by formaldehyde primary sources under certain conditions, whereas the GNR might not be. As glyoxal measurements are becoming increasingly available, using the FNR and GNR together as O3 sensitivity indicators has broad potential applications.

2.
Sci Total Environ ; 950: 175068, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094651

RESUMO

Chengdu Plain Urban Agglomeration (CPUA) is one of the most serious areas suffering from ozone pollution in China. A comprehensive field observation focused on the ozone production rate and its sensitivity was conducted at CPUA in the summer of 2019. Six sampling sites were set and two ozone pollution episodes were recognized. The daily maximum 8-h average (MDA8) O3 concentration reached 137.9 ppbv in the urban sites during the ozone pollution episode. Peak concentration of O3 was closely related to intense solar radiation, high temperatures, and precursor emissions. The OH-HO2-RO2 radical chemistry and ozone production rate (P(O3)) were calculated using an observation-based model (OBM). The daily peak OH concentration varied in the range of 3-13 × 106 molecules cm-3, and peak HO2 and RO2 were in the range of 2-14 × 108 molecules cm-3 during ozone pollution episodes. During the ozone pollution episode, the average maximum of P(O3) in suburban sites (about 30 ppbv h-1.) was compared with urban sites, and the maximum of P(O3) was 18 ppbv h-1 in rural sites. The relative incremental reactivity (RIR) results demonstrate that it was a VOCs-limited regime in the central urban area of Chengdu, with NOx suppression effect in some regions. In the southern neighboring suburb of Chengdu, it was VOCs-limited as well. However, the northern suburban area was a transition region. In the remote rural areas of the southern CPUA, it was highly NOx-limited. Local ozone production driven by the photochemical process is crucial to the ozone pollution formation in CPUA. The geographically differentiated recognition of the ozone regime found by this study can help to tailor control strategies for local conditions and avoid the negative effects of a one-size-fits-all approach.

3.
Sci Total Environ ; 944: 173712, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38830412

RESUMO

The sensitivity of tropospheric ozone (O3) to its precursors volatile organic compounds (VOCs) and nitrogen oxides (NOX) determines the emission reduction strategy for O3 mitigation. Due to the lack of comprehensive vertical measurements of VOCs, the vertical distribution of O3 sensitivity regimes has not been well understood. O3 precursor sensitivity determined by ground-level measurements has been generally used to guide O3 control strategy. Here, to precisely diagnose O3 sensitivity regimes at different heights in the planetary boundary layer (PBL), we developed a vertical measurement system based on an unmanned aerial vehicle platform to conduct comprehensive vertical measurements of VOCs, NOX and other relevant parameters. Our results suggest that the O3 precursor sensitivity shifts from a VOC-limited regime at the ground to a NOX-limited regime at upper layers, indicating that the ground-level O3 sensitivity cannot represent the situation of the whole PBL. We also found that the state-of-the-art photochemical model tends to underestimate oxygenated VOCs at upper layers, resulting in overestimation of the degree of VOCs-limited regime. Therefore, thorough vertical measurements of VOCs to accurately diagnose O3 precursor sensitivity is in urgent need for the development of effective O3 control strategies.

4.
Environ Pollut ; 304: 119072, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301034

RESUMO

Many studies revealed the rapid decline of atmospheric PM2.5 in Beijing due to the emission control measures. The variation of particle number concentration (PN) which has important influences on regional climate and human health, however, was rarely reported. This study measured the particle number size distributions (PNSD) in 3-700 nm in winter of Beijing during 2013-2019. It was found that PN decreased by 58% from 2013 to 2017, but increased by 29% from 2017 to 2019. By Positive matrix factorization (PMF) analysis, five source factors of PNSD were identified as Nucleation, Fresh traffic, Aged traffic + Diesel, Coal + biomass burning and Secondary. Overall, factors associated with primary emissions were found to decrease continuously. Coal + biomass burning dominated the reduction (65%) among the three primary sources during 2013-2017, which resulted from the great efforts on emission control of coal combustion and biomass burning. Fresh traffic and Aged traffic + Diesel decreased by 43% and 66%, respectively, from 2013 to 2019, as a result of the upgrade of the vehicle emission standards in Beijing-Tianjin-Hebei area. On the other hand, the contribution from Nucleation and Secondary decreased with the reduction of gaseous precursors in 2013-2017, but due to the increased intensity of new particle formation (NPF) and secondary oxidation, they increased by 56% and 70%, respectively, from 2017 to 2019, which led to the simultaneously increase of PN and particle volume concentration. This study indicated that NPF may play an important role in urban atmosphere under continuous air quality improvement.


Assuntos
Poluentes Atmosféricos , Idoso , Poluentes Atmosféricos/análise , Pequim , China , Carvão Mineral/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
5.
Sci Total Environ ; 808: 152122, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34871687

RESUMO

Formaldehyde (HCHO) can possibly be taken by atmospheric particles due to its moderate solubility. Although previous model studies have proposed that uptake by particles was a large sink for HCHO, direct observation of HCHO partitioning and estimation of HCHO uptake coefficient (γ) for tropospheric conditions are still limited. In this work, online measurements of gaseous HCHO (HCHOg) and particulate HCHO (HCHOp) were carried out simultaneously at an urban site in Beijing in winter and spring. The results indicated that the average concentrations of HCHOp ranged from 0.15 to 0.4 µg m-3, accounting for 1.2% to 10% of the total HCHO (i.e., HCHOg + HCHOp). The median values of estimated γ based on the measured data were in the range of about 1.09 ∗ 10-5-2.42 ∗ 10-4, with lower values during PM2.5 pollution episodes. Besides, the pH and liquid water content of aerosols that are mainly determined by ambient relative humidity (RH) and inorganic salt composition were identified as the main influencing factors of γ. We propose that the HCHO uptake process was mainly driven by hydrone and hydrogen ions in particles.


Assuntos
Poluentes Atmosféricos , Gases , Poluentes Atmosféricos/análise , Poeira , Monitoramento Ambiental , Formaldeído/análise , Gases/análise , Material Particulado/análise
6.
Sci Total Environ ; 799: 149491, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426340

RESUMO

Volatile organic compounds (VOCs) play an important role in air pollution. In this study, we conducted comprehensive field observations to investigate wintertime air pollution in Beijing, Wangdu, and Dezhou in the Beijing-Tianjin-Hebei region during 2017 and 2018. The average VOC concentrations of the three sites were 35.6 ± 26.6, 70.9 ± 56.3, and 50.5 ± 40.0 ppbv, respectively. The species with the highest concentration were similar in all three sites and included ethane, ethylene, acetylene, acetone, and toluene. The VOC mixing ratios of the three sites showed synchronous growth during pollution episodes and were 1.2-2 times higher than those during clean periods. Moreover, the OH loss rates (LOH) during pollution episodes were 1.2-1.7 times that during clean periods. The crucial reactive species in the three sites were ethylene, propylene, and acetaldehyde, contributing approximately 70% to the total LOH during pollution periods. According to the source apportionment analysis, vehicle exhausts were the largest source of VOCs in Beijing, accounting for more than 50% of the total emissions. During the pollution episodes, Beijing's industrial emissions decreased, but the secondary and background sources increased. Coal combustion was significant (approximately 40%) in Wangdu and should therefore be prioritized in emission reduction policies. In Dezhou, industrial emissions had a considerable impact on the VOC mixing ratio during pollution periods and should therefore be prioritized. The backward trajectory analysis showed that VOCs from the southern region likely contribute to Beijing's VOC pollution, highlighting the importance of regional integration for air quality management.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
7.
Sci Total Environ ; 756: 144127, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33288267

RESUMO

Photolysis of nitrous acid (HONO) is one of the major sources for atmospheric hydroxyl radicals (OH), playing significant role in initiating tropospheric photochemical reactions for ozone (O3) production. However, scarce field investigations were conducted to elucidate this effect. In this study, a field campaign was conducted at a suburban site in southwest China. The whole observation was classified into three periods based on O3 levels and data coverage: the serious O3 pollution period (Aug 13-18 as P1), the O3 pollution period (Aug 22-28 as P2) and the clean period (Sep 3-12 as P3), with average O3 peak values of 96 ppb, 82 ppb and 44 ppb, respectively. There was no significant difference of the levels of O3 precursors (VOCs and NOx) between P1 and P2, and thus the evident elevation of OH peak values in P1 was suspected to be the most possible explanation for the higher O3 peak values. Considering the larger contribution of HONO photolysis to HOX primary production than photolysis of HCHO, O3 and ozonolysis of Alkenes, sensitivity tests of HONO reduction on O3 production rate in P1 are conducted by a 0-dimension model. Reduced HONO concentration effectively slows the O3 production in the morning, and such effect correlates with the calculated production rate of OH radicals from HONO photolysis. Higher HONO level supplying for OH radical initiation in the early morning might be the main reason for the higher O3 peak values in P1, which explained the correlation (R2 = 0.51) between average O3 value during daytime (10:00-19:00 LT) and average HONO value during early morning (00:00-05:00 LT). For nighttime accumulation, a suitable range of relative humidity that favored NO2 conversion within P1 was assumed to be the reason for the higher HONO concentration in the following early morning which promoted O3 peak values.

8.
Sci Total Environ ; 772: 144829, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578154

RESUMO

This study reports on the first continuous measurements of ambient OH and HO2 radicals at a suburban site in Chengdu, Southwest China, which were collected during 2019 as part of a comprehensive field campaign 'CompreHensive field experiment to explOre the photochemical Ozone formation mechaniSm in summEr - 2019 (CHOOSE-2019)'. The mean concentrations (11:00-15:00) of the observed OH and HO2 radicals were 9.5 × 106 and 9.0 × 108 cm-3, respectively. To investigate the state-of-the-art chemical mechanism of radical, closure experiments were conducted with a box model, in which the RACM2 mechanism updated with the latest isoprene chemistry (RACM2-LIM1) was used. In the base run, OH radicals were underestimated by the model for the low-NO regime, which was likely due to the missing OH recycling. However, good agreement between the observed and modeled OH concentrations was achieved when an additional species X (equivalent to 0.25 ppb of NO mixing ratio) from one new OH regeneration cycle (RO2 + X â†’ HO2, HO2 + X â†’ OH) was added into the model. Additionally, in the base run, the model could reproduce the observed HO2 concentrations. Discrepancies in the observed and modeled HO2 concentrations were found in the sensitivity runs with HO2 heterogeneous uptake, indicating that the impact of the uptake may be less significant in Chengdu because of the relatively low aerosol concentrations. The ROx (= OH + HO2 + RO2) primary source was dominated by photolysis reactions, in which HONO, O3, and HCHO photolysis accounted for 34%, 19%, and 23% during the daytime, respectively. The efficiency of radical cycling was quantified by the radical chain length, which was determined by the NO to NO2 ratio successfully. The parameterization of the radical chain length may be very useful for the further determinations of radical recycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA