Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 35(5): 679-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25662849

RESUMO

Malignant gliomas are the most common primary brain tumors, and the molecular mechanisms involving their progression and recurrence are still largely unclear. Substantial data indicate that the oncogene miR-494-3p is significantly elevated in gliomas, but the molecular functions of miR-494-3p in gliomagenesis are largely unknown. The present study aimed to explore the role of miR-494-3p and its molecular mechanism in human brain gliomas, malignant glioma cell lines, and cancer stem-like cells. The expression level of miR-494-3p in 48 human glioma issues and 8 normal brain tissues was determined using stem-loop real-time polymerase chain reaction (PCR). To study the function of miR-494-3p inhibitor in glioma cells, the miR-494-3p inhibitor lentivirus was used to transfect glioma cells. Transwell invasion system was used to estimate the effects of miR-494-3p inhibitor on the invasiveness of glioma cells. A mouse model was used to test the effect of miR-494-3p inhibitor on glioma proliferation and invasion in vivo. Results showed that the expression of miR-494-3p in human brain glioma tissues was higher than in normal brain tissues. Downregulated expression of miR-494-3p can inhibit the invasion and proliferation and promote apoptosis in glioma cells. Quantitative reverse transcription PCR and Western blotting analysis revealed that the expression of PTEN was increased after downexpression of miR-494-3p in glioma cells (U87 and U251). miR-494-3p inhibitor could prevent migration, invasion, proliferation, and promote apotosis in gliomas through PTEN/AKT pathway. Therefore, the study results have shown that miR-494-3p may act as a therapeutic target in gliomas.


Assuntos
Apoptose , Movimento Celular , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/enzimologia , Humanos , Lentivirus/metabolismo , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Sci ; 105(3): 265-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24418124

RESUMO

Recent studies have identified a class of small non-coding RNA molecules, named microRNA (miRNA), that is dysregulated in malignant brain glioblastoma. Substantial data have indicated that miRNA-16 (miR-16) plays a significant role in tumors of various origins. This miRNA has been linked to various aspects of carcinogenesis, including cell apoptosis and migration. However, the molecular functions of miR-16 in gliomagenesis are largely unknown. We have shown that the expression of miR-16 in human brain glioma tissues was lower than in non-cancerous brain tissues, and that the expression of miR-16 decreased with increasing degrees of malignancy. Our data suggest that the expression of miR-16 and nuclear factor (NF)-κB1 was negatively correlated with glioma levels. MicroRNA-16 decreased glioma malignancy by downregulating NF-κB1 and MMP9, and led to suppressed invasiveness of human glioma cell lines SHG44, U87, and U373. Our results also indicated that upregulation of miR-16 promoted apoptosis by suppressing BCL2 expression. Finally, the upregulation of miR-16 in a nude mice model of human glioma resulted in significant suppression of glioma growth and invasiveness. Taken together, our experiments have validated the important role of miR-16 as a tumor suppressor gene in glioma growth and invasiveness, and revealed a novel mechanism of miR-16-mediated regulation in glioma growth and invasiveness through inhibition of BCL2 and the NF-κB1/MMP-9 signaling pathway. Therefore, our experiments suggest the possible future use of miR-16 as a therapeutic target in gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioma/metabolismo , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Subunidade p50 de NF-kappa B/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Carga Tumoral
3.
Onco Targets Ther ; 10: 4305-4313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919779

RESUMO

Glioma is one of the most common types of adult primary brain tumors, and the underlying molecular mechanisms still remain unclear. Nuclear factor-kappa B1 (NF-κB1) is involved in a variety of malignancies and is widely expressed in malignant tumors. However, the expression of NF-κB1 in different grades of glioma, the correlation between NF-κB1 and Bcl-2 expressions in gliomas, and the research between NF-κB1 and early apoptosis of glioma cells have not been reported so far. In this study, the expression level of NF-κB1 in 31 human glioma tissues and six nonneoplastic brain tissues was determined using quantitative real-time polymerase chain reaction. Results showed that the expression of NF-κB1 in human glioma tissues and glioma cell lines, SHG44 and U87, was significantly higher compared to noncancerous brain tissues and that the expression increased with increasing degrees of tumor malignancy. Similar results were demonstrated with the expression of Bcl-2 in the same human glioma specimens. Flow cytometry results showed that inhibition of NF-κB1 expression significantly promoted apoptosis of SHG44 and U87 in human glioma cells. Western blot analysis further confirmed decreased expression of Bcl-2 protein after inhibition of NF-κB1 protein expression. Taken together, NF-κB1 overexpression inhibits early apoptosis of glioma cells and high expression of NF-κB1 promotes the expression of antiapoptotic gene Bcl-2. Therefore, our study results provide a theoretical basis for antiapoptotic mechanism of tumor cells in association with NF-κB1.

4.
Onco Targets Ther ; 8: 3211-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604788

RESUMO

Gliomas are the most common malignant primary brain tumors, and new clinical biomarkers and therapeutic targets are imminently required. MicroRNAs (miRNAs) are a novel class of small non-coding RNAs (∼22nt) involved in the regulation of various biological processes. Here, by using real-time polymerase chain reaction, miRNA-132 was found to be significantly deregulated in glioma tissues. Based on the prediction of the target genes of miR-132, we hypothesized that there is a significant association between miR-132 and matrix metalloproteinase (MMP) 16 (MT3-MMP), a protein of the MMP family. We showed that the up-expression of miR-132 inhibited cell migration and invasion in the human glioma cell lines A172, SHG44, and U87. Furthermore, the overexpression of miR-132 reduced the expression of MMP16 in A172, SHG44, and U87 cells. Taken together, our study suggested that miR-132 affects glioma cell migration and invasion by MMP16 and implicates miR-132 as a metastasis-inhibiting miRNA in gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA