RESUMO
Animal fertilization relies on hundreds of sperm racing toward the egg, whereas, in angiosperms, only two sperm cells are delivered by a pollen tube to the female gametes (egg cell and central cell) for double fertilization. However, unsuccessful fertilization under this one-pollen-tube design can be detrimental to seed production and plant survival. To mitigate this risk, unfertilized-gamete-controlled extra pollen tube entry has been evolved to bring more sperm cells and salvage fertilization. Despite its importance, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we report that, in Arabidopsis, the central cell secretes peptides SALVAGER1 and SALVAGER2 in a directional manner to attract pollen tubes when the synergid-dependent attraction fails or is terminated by pollen tubes carrying infertile sperm cells. Moreover, loss of SALs impairs the fertilization recovery capacity of the ovules. Therefore, this research uncovers a female gamete-attraction system that salvages seed production for reproductive assurance.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/fisiologia , Fertilização , Tubo Polínico , Sementes , Células Germinativas VegetaisRESUMO
In angiosperms, the timely delivery of sperm cell nuclei by pollen tube (PT) to the ovule is vital for double fertilization. Penetration of PT into maternal stigma tissue is a critical step for sperm cell nuclei delivery, yet little is known about the process. Here, a male-specific and sporophytic mutant xt6, where PTs are able to germinate but unable to penetrate the stigma tissue, is reported in Oryza sativa. Through genetic study, the causative gene was identified as Chalcone synthase (OsCHS1), encoding the first enzyme in flavonoid biosynthesis. Indeed, flavonols were undetected in mutant pollen grains and PTs, indicating that the mutation abolished flavonoid biosynthesis. Nevertheless, the phenotype cannot be rescued by exogenous application of quercetin and kaempferol as reported in maize and petunia, suggesting a different mechanism exists in rice. Further analysis showed that loss of OsCHS1 function disrupted the homeostasis of flavonoid and triterpenoid metabolism and led to the accumulation of triterpenoid, which inhibits significantly α-amylase activity, amyloplast hydrolysis and monosaccharide content in xt6, these ultimately impaired tricarboxylic acid (TCA) cycle, reduced ATP content and lowered the turgor pressure as well. Our findings reveal a new mechanism that OsCHS1 modulates starch hydrolysis and glycometabolism through modulating the metabolic homeostasis of flavonoids and triterpenoids which affects α-amylase activity to maintain PT penetration in rice, which contributes to a better understanding of the function of CHS1 in crop fertility and breeding.
Assuntos
Oryza , Tubo Polínico , Tubo Polínico/genética , Flavonoides/metabolismo , Oryza/metabolismo , Melhoramento Vegetal , Sementes , Homeostase , Amido/metabolismo , alfa-Amilases/metabolismoRESUMO
Double fertilization is a key innovation for the evolutionary success of angiosperms by which the two fertilized female gametes, the egg cell and central cell, generate the embryo and endosperm, respectively. The female gametophyte (embryo sac) enclosed in the sporophyte is derived from a one-celled haploid cell lineage. It undergoes successive events of mitotic divisions, cellularization, and cell specification to give rise to the mature embryo sac, which contains the two female gametes accompanied by two types of accessory cells, namely synergids and antipodals. How the cell fate of the central cell is specified has long been equivocal and is further complicated by the structural diversity of female gametophyte across plant taxa. Here, MADS-box protein AGL80 was verified as a transcriptional repressor that directly suppresses the expression of accessory cell-specific genes to specify the central cell. Further genetic rescue and phylogenetic assay of the AGL80 orthologs revealed a possible conserved mechanism in the Brassicaceae family. Results from this study provide insight into the molecular determination of the second female gamete cell in Brassicaceae.
Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Óvulo Vegetal/genética , Transcrição Gênica , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endosperma/metabolismo , Fertilização/genética , Mutação , Filogenia , Plantas Geneticamente Modificadas , Fatores de Transcrição/genéticaRESUMO
Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Capsella/genética , Capsella/metabolismo , Capsella/fisiologia , Membrana Celular/metabolismo , Mutação , Óvulo Vegetal/metabolismo , Fenótipo , Fosfotransferases/química , Fosfotransferases/genética , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , ReproduçãoRESUMO
Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a ß-strand from the island domain of PSKR, forming an anti-ß-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.
Assuntos
Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/química , Arabidopsis/química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutação/genética , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Multimerização Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Especificidade por SubstratoRESUMO
The trans-Golgi network (TGN) is an essential tubular-vesicular organelle derived from the Golgi and functions as an independent sorting and trafficking hub within the cell. However, the molecular regulation of TGN biogenesis remains enigmatic. Here we identified an Arabidopsis mutant loss of TGN (lot) that is defective in TGN formation and sterile due to impaired pollen tube growth in the style. The mutation leads to overstacking of the Golgi cisternae and significant reduction in the number of TGNs and vesicles surrounding the Golgi in pollen, which is corroborated by the dispersed cytosolic distribution of TGN-localized proteins. Consistently, deposition of extracellular pectin and plasma membrane localization of kinases and phosphoinositide species are also impaired. Subcellular localization analysis suggests that LOT is localized on the periphery of the Golgi cisternae, but the mutation does not affect the localization of Golgi-resident proteins. Furthermore, the yeast complementation result suggests that LOT could functionally act as a component of the guanine nucleotide exchange factor (GEF) complex of small Rab GTPase Ypt6. Taken together, these findings suggest that LOT is a critical player for TGN biogenesis in the plant lineage.
Assuntos
Arabidopsis/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Rede trans-Golgi/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Tubo Polínico/genética , Tubo Polínico/metabolismo , Transporte Proteico , Rede trans-Golgi/genéticaRESUMO
Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated â¼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
Assuntos
Evolução Biológica , Fabaceae/genética , Genômica/métodos , Fixação de Nitrogênio , Proteínas de Plantas/genética , Nodulação/genética , Rhizobium/fisiologia , Simbiose , Sequência de Aminoácidos , Fabaceae/microbiologia , Nitrogênio/metabolismo , Fenótipo , Filogenia , Nódulos Radiculares de Plantas , Homologia de SequênciaRESUMO
S-Acylation is a reversible post-translational lipid modification in which a long chain fatty acid covalently attaches to specific cysteine(s) of proteins via a thioester bond. It enhances the hydrophobicity of proteins, contributes to their membrane association and plays roles in protein trafficking, stability and signalling. A family of Protein S-Acyl Transferases (PATs) is responsible for this reaction. PATs are multi-pass transmembrane proteins that possess a catalytic Asp-His-His-Cys cysteine-rich domain (DHHC-CRD). In Arabidopsis, there are currently 24 such PATs, five having been characterized, revealing their important roles in growth, development, senescence and stress responses. Here, we report the functional characterization of another PAT, AtPAT21, demonstrating the roles it plays in Arabidopsis sexual reproduction. Loss-of-function mutation by T-DNA insertion in AtPAT21 results in the complete failure of seed production. Detailed studies revealed that the sterility of the mutant is caused by defects in both male and female sporogenesis and gametogenesis. To determine if the sterility observed in atpat21-1 was caused by upstream defects in meiosis, we assessed meiotic progression in pollen mother cells and found massive chromosome fragmentation and the absence of synapsis in the initial stages of meiosis. Interestingly, the fragmentation phenotype was substantially reduced in atpat21-1 spo11-1 double mutants, indicating that AtPAT21 is required for repair, but not for the formation, of SPO11-induced meiotic DNA double-stranded breaks (DSBs) in Arabidopsis. Our data highlight the importance of protein S-acylation in the early meiotic stages that lead to the development of male and female sporophytic reproductive structures and associated gametophytes in Arabidopsis.
Assuntos
Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Óvulo Vegetal/fisiologia , Pólen/fisiologia , Acilação , Aciltransferases/química , Aciltransferases/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação da Expressão Gênica de Plantas , Meiose , Mutação , Plantas Geneticamente Modificadas , PolinizaçãoRESUMO
In rice (Oryza sativa L.), floral organ development is an important trait. Although a role for PINOID in regulating floral organ development was reported recently, the underlying molecular mechanism remains unclear. Here, we isolated and characterized an abnormal floral organ mutant and mapped the causative gene through an improved MutMap method. Molecular study revealed that the observed phenotype is caused by a point mutation in OsPINOID (OsPID) gene; therefore, we named the mutation as ospid-4. Our data demonstrate that OsPID interacts with OsPIN1a and OsPIN1b to regulate polar auxin transport as shown previously. Additionally, OsPID also interacts with OsMADS16 to regulate transcription during floral organ development in rice. Together, we propose a model that OsPID regulates floral organ development by modulating auxin polar transport and interaction with OsMADS16 and/or LAX1 in rice. These results provide a novel insight into the role of OsPID in regulating floral organ development of rice, especially in stigma development, which would be useful for genetic improvement of high-yield breeding of rice.
Assuntos
Oryza , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos , Mutação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
tRNA molecules, which contain the most abundant post-transcriptional modifications, are crucial for proper gene expression and protein biosynthesis. Methylation at N1 of adenosine 58 (A58) is critical for maintaining the stability of initiator methionyl-tRNA (tRNAiMet) in bacterial, archaeal, and eukaryotic tRNAs. However, although research has been conducted in yeast and mammals, it remains unclear how A58 in plant tRNAs is modified and involved in development. In this study, we identify the nucleus-localized complex AtTRM61/AtTRM6 in Arabidopsis as tRNA m1A58 methyltransferase. Deficiency or a lack of either AtTRM61 or AtTRM6 leads to embryo arrest and seed abortion. The tRNA m1A level decreases in conditionally complemented Attrm61/LEC1pro::AtTRM61 plants and this is accompanied by reduced levels of tRNAiMet, indicating the importance of the tRNA m1A modification for tRNAiMet stability. Taken together, our results demonstrate that tRNA m1A58 modification is necessary for tRNAiMet stability and is required for embryo development in Arabidopsis.
Assuntos
Arabidopsis , tRNA Metiltransferases , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismoRESUMO
The polar growth of pollen tubes is essential for the delivery of sperm cells during fertilization in angiosperms. How this polar growth is regulated has been a long-standing question. An in vitro pharmacological assay previously implicated proton flux in pollen tube growth, although genetic and cellular supporting evidence was lacking. Here, we report that protons form a gradient from the pollen tube tip to the shank region and this gradient is generated by three members of Arabidopsis H+ -ATPases (AHAs). Genetic analysis suggested that these AHAs are essential for pollen tube growth, thus providing new insight into the regulation of polar growth.
Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Tubo Polínico/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tubo Polínico/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/genéticaRESUMO
Protoporphyrinogen IX oxidase1 (PPO1) catalyzes the oxidation of protoporphyrinogen IX to form protoporphyrin IX in the plastid tetrapyrrole biosynthesis pathway and is also essential for plastid RNA editing in Arabidopsis thaliana. The Arabidopsis ppo1-1 mutation was previously shown to be seedling lethal; however, in this study, we showed that the heterozygous ppo1-1/+ mutant exhibited reproductive growth defects characterized by reduced silique length and seed set, as well as aborted pollen development. In this mutant, the second mitotic division was blocked during male gametogenesis, whereas female gametogenesis was impaired at the one-nucleate stage. Before perishing at the seedling stage, the homozygous ppo1-1 mutant displayed reduced hypocotyl and root length, increased levels of reactive oxygen species accumulation and elevated cell death, especially under light conditions. Wild-type seedlings treated with acifluorfen, a PPO1 inhibitor, showed similar phenotypes to the ppo1-1 mutants, and both plants possessed a high proportion of 2C nuclei and a low proportion of 8C nuclei compared with the untreated wild type. Genome-wide RNA-seq analysis showed that a number of genes, including cell cycle-related genes, were differentially regulated by PPO1. Consistently, PPO1 was highly expressed in the pollen, anther, pistil and root apical meristem cells actively undergoing cell division. Our study reveals a role for PPO1 involved in the mitotic cell cycle during gametogenesis and seedling development.
Assuntos
Arabidopsis/metabolismo , Ciclo Celular/fisiologia , Cloroplastos/metabolismo , Arabidopsis/genética , Ciclo Celular/genética , Gametogênese/genética , Gametogênese/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plastídeos/genética , Plastídeos/metabolismoRESUMO
During male gametogenesis in Arabidopsis, the haploid microspore undergoes an asymmetric division to produce a vegetative and a generative cell, the latter of which continues to divide symmetrically to form two sperms. This simple system couples cell cycle with cell fate specification. Here we addressed the role of DNA replication in male gametogenesis using a mutant bicellular pollen 1 (bice1), which produces bicellular, rather than tricellular, pollen grains as in the wild-type plant at anthesis. The mutation prolonged DNA synthesis of the generative cell, which resulted in c. 40% of pollen grains arrested at the two-nucleate stage. The extended S phase did not impact the cell fate of the generative cell as shown by cell-specific markers. BICE1 encodes a plant homolog of human D123 protein that is required for G1 progression, but the underlying mechanism is unknown. Here we showed that BICE1 interacts with MCM4 and MCM7 of the pre-replication complex. Consistently, double mutations in BICE1 and MCM4, or MCM7, also led to bicellular pollen and condensed chromosomes. These suggest that BICE1 plays a role in modulating DNA replication via interaction with MCM4 and MCM7.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Ciclo Celular/genética , Núcleo Celular/metabolismo , DNA de Plantas/biossíntese , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Pólen/citologia , Pólen/ultraestrutura , Ligação Proteica , Plântula/crescimento & desenvolvimento , Plântula/metabolismoRESUMO
Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gß, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis.
Assuntos
Proteínas de Arabidopsis/genética , Divisão Celular Assimétrica/genética , Proteínas de Transporte/genética , Desenvolvimento Embrionário/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Endosperma/genética , Endosperma/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Zigoto/crescimento & desenvolvimentoRESUMO
Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed.
Assuntos
Óvulo Vegetal/genética , Óvulo Vegetal/fisiologia , Peptídeos/metabolismo , Tubo Polínico/genética , Tubo Polínico/fisiologia , Modelos Biológicos , Óvulo Vegetal/citologiaRESUMO
Grain length is one of the determinants of yield in rice and auxin plays an important role in regulating it by mediating cell growth. Although several genes in the auxin pathway are involved in regulating grain length, the underlying molecular mechanisms remain unclear. In this study we identify a RING-finger and wd40-associated ubiquitin-like (RAWUL) domain-containing protein, Gnp4/LAX2, with a hitherto unknown role in regulation of grain length by its influence on cell expansion. Gnp4/LAX2 is broadly expressed in the plant and subcellular localization analysis shows that it encodes a nuclear protein. Overexpression of Gnp4/LAX2 can significantly increase grain length and thousand-kernel weight. Moreover, Gnp4/LAX2 physically interacts with OsIAA3 and consequently interferes with the OsIAA3-OsARF25 interaction in vitro and in vivo. OsIAA3 RNAi plants consistently exhibit longer grains, while the mutant osarf25 has small grains. In addition, OsARF25 binds to the promoter of OsERF142/SMOS1, a regulator of organ size, and positively regulates its expression. Taken together, the results reveal that Gnp4/LAX2 functions as a regulator of grain length through participation in the OsIAA3-OsARF25-OsERF142 pathway and that it has potential value for molecular breeding in rice.
Assuntos
Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Grão Comestível/genética , Proteínas Nucleares/metabolismo , Oryza , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de SequênciaRESUMO
In flowering plants, sperm cells are delivered to the embryo sac by a pollen tube guided by female signals. Both the gametic and synergid cells contribute to pollen tube attraction. Synergids secrete peptide signals that lure the tube, while the role of the gametic cells is unknown. Previously, we showed that CENTRAL CELL GUIDANCE (CCG) is essential for pollen tube attraction in Arabidopsis thaliana, but the molecular mechanism is unclear. Here, we identified CCG BINDING PROTEIN1 (CBP1) and demonstrated that it interacts with CCG, Mediator subunits, RNA polymerase II (Pol II), and central cell-specific AGAMOUS-like transcription factors. In addition, CCG interacts with TATA-box Binding Protein 1 and Pol II as a TFIIB-like transcription factor. CBP1-knockdown ovules are defective in pollen tube attraction. Expression profiling revealed that cysteine-rich peptide (CRP) transcripts were downregulated in ccg ovules. CCG and CBP1 coregulate a subset of CRPs in the central cell and the synergids, including the attractant LURE1. CBP1 is extensively expressed in multiple vegetative tissues and specifically in the central cell in reproductive growth. We propose that CBP1, via interaction with CCG and the Mediator complex, connects transcription factors and the Pol II machinery to regulate pollen tube attraction.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Genes Reporter , Modelos Moleculares , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Óvulo Vegetal/citologia , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Tubo Polínico/citologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Polinização , Transporte Proteico , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismoRESUMO
BACKGROUND: Most agronomic traits in rice are complex and polygenic. The identification of quantitative trait loci (QTL) for grain length is an important objective of rice genetic research and breeding programs. RESULTS: Herein, we identified 99 QTL for grain length by GWAS based on approximately 10 million single nucleotide polymorphisms from 504 cultivated rice accessions (Oryza sativa L.), 13 of which were validated by four linkage populations and 92 were new loci for grain length. We scanned the Ho (observed heterozygosity per locus) index of coupled-parents of crosses mapping the same QTL, based on linkage and association mapping, and identified two new genes for grain length. We named this approach as Ho-LAMap. A simulation study of six known genes showed that Ho-LAMap could mine genes rapidly across a wide range of experimental variables using deep-sequencing data. We used Ho-LAMap to clone a new gene, OsLG3, as a positive regulator of grain length, which could improve rice yield without influencing grain quality. Sequencing of the promoter region in 283 rice accessions from a wide geographic range identified four haplotypes that seem to be associated with grain length. Further analysis showed that OsLG3 alleles in the indica and japonica evolved independently from distinct ancestors and low nucleotide diversity of OsLG3 in indica indicated artificial selection. Phylogenetic analysis showed that OsLG3 might have much potential value for improvement of grain length in japonica breeding. CONCLUSIONS: The results demonstrated that Ho-LAMap is a potential approach for gene discovery and OsLG3 is a promising gene to be utilized in genomic assisted breeding for rice cultivar improvement.
Assuntos
Mapeamento Cromossômico/métodos , Genes de Plantas , Oryza/anatomia & histologia , Oryza/genética , Sementes/anatomia & histologia , Sequência de Bases , Cruzamento , Contagem de Células , Núcleo Celular/metabolismo , Simulação por Computador , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Ligação Genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Heterozigoto , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Sementes/citologia , Ativação Transcricional/genéticaRESUMO
Pollen undergo a maturation process to sustain pollen viability and prepare them for germination. Molecular mechanisms controlling these processes remain largely unknown. Here, we report an Arabidopsis thaliana mutant, dayu (dau), which impairs pollen maturation and in vivo germination. Molecular analysis indicated that DAU encodes the peroxisomal membrane protein ABERRANT PEROXISOME MORPHOLOGY9 (APEM9). DAU is transiently expressed from bicellular pollen to mature pollen during male gametogenesis. DAU interacts with peroxisomal membrane proteins PEROXIN13 (PEX13) and PEX16 in planta. Consistently, both peroxisome biogenesis and peroxisome protein import are impaired in dau pollen. In addition, the jasmonic acid (JA) level is significantly decreased in dau pollen, and the dau mutant phenotype is partially rescued by exogenous application of JA, indicating that the male sterility is mainly due to JA deficiency. In addition, the phenotypic survey of peroxin mutants indicates that the PEXs most likely play different roles in pollen germination. Taken together, these data indicate that DAU/APEM9 plays critical roles in peroxisome biogenesis and function, which is essential for JA production and pollen maturation and germination.