Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121664

RESUMO

The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
EMBO J ; 37(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30061313

RESUMO

Shoot regeneration can be achieved in vitro through a two-step process involving the acquisition of pluripotency on callus-induction media (CIM) and the formation of shoots on shoot-induction media. Although the induction of root-meristem genes in callus has been noted recently, the mechanisms underlying their induction and their roles in de novo shoot regeneration remain unanswered. Here, we show that the histone acetyltransferase HAG1/AtGCN5 is essential for de novo shoot regeneration. In developing callus, it catalyzes histone acetylation at several root-meristem gene loci including WOX5, WOX14, SCR, PLT1, and PLT2, providing an epigenetic platform for their transcriptional activation. In turn, we demonstrate that the transcription factors encoded by these loci act as key potency factors conferring regeneration potential to callus and establishing competence for de novo shoot regeneration. Thus, our study uncovers key epigenetic and potency factors regulating plant-cell pluripotency. These factors might be useful in reprogramming lineage-specified plant cells to pluripotency.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/enzimologia , Epigênese Genética/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Histona Acetiltransferases/biossíntese , Meristema/enzimologia , Acetilação , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Loci Gênicos/fisiologia , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Meristema/genética , Células Vegetais/enzimologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia
3.
Plant Cell Physiol ; 61(9): 1600-1613, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579181

RESUMO

Plants have the ability to regenerate whole plant body parts, including shoots and roots, in vitro from callus derived from a variety of tissues. However, the underlying mechanisms for this de novo organogenesis, which is based on the totipotency of callus cells, are poorly understood. Here, we report that a microRNA (miRNA)-mediated posttranscriptional regulation plays an important role in de novo shoot regeneration. We found that mutations in HUA ENHANCER 1 (HEN1), a gene encoding a small RNA methyltransferase, cause cytokinin-related defects in de novo shoot regeneration. A hen1 mutation caused a large reduction in the miRNA319 (miR319) level and a subsequent increase in its known target (TCP3 and TCP4) transcript levels. TCP transcription factors redundantly inhibited shoot regeneration and directly activated the expression of a negative regulator of cytokinin response ARABIDOPSIS THALIANA RESPONSE REGULATOR 16 (ARR16). A tcp4 mutation at least partly rescued the shoot-regeneration defect and derepression of ARR16 in hen1. These findings demonstrate that the miR319-TCP3/4-ARR16 axis controls de novo shoot regeneration by modulating cytokinin responses.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Brotos de Planta/fisiologia , Regeneração/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocininas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Mutação , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA