Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 45(24): 2080-2090, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742401

RESUMO

We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the "14 Cs → C7v" thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C10H10.

2.
Chemistry ; : e202403140, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363714

RESUMO

Twisted grain boundary (TGB) phases exhibit highly frustrated and complex liquid crystal structures, and have attracted enormous interest because of their unique internal structure, textures and properties. However, among the few real concerns related to these interesting structures, applying them to prepare polymer-stabilized colored liquid crystal films has been challenging. Herein, the organic-inorganic hybrid silica (OIHS) films with a TGBA* structure were prepared using two organosilanes and one chiral additive under an acidic condition. The structural color of the films can be adjusted by varying the polycondensation temperature and the concentration of the chiral additive. A structurally colored pattern was prepared by the inject printing, which was suitably applied for decoration and anti-counterfeiting.

3.
Chemphyschem ; : e202400595, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034292

RESUMO

Recently it has been shown that two coincident well designed laser pulses with two different combinations of circular polarizations ( ++ or -+ ) can create chiral electronic densities in an oriented heteronuclear diatomic molecule. Subsequently, the chirality flips from the electronic Ra to Sa to Ra to Sa etc. enantiomers, with periods in the femtosecond (fs) and attosecond (as) time domains. The results were obtained by means of quantum dynamics simulations for oriented NaK. Here we investigate the electronic chirality flips in oriented RbCs induced by all possible ( ++ , -+ , +- , -- ) combinations of circular polarizations of two coincident well-designed laser pulses. Accordingly, the ++ and -- as well as the +- and -+ combinations generate opposite electronic enantiomers, e. g. Ra versus Sa, followed by opposite periodic chirality flips, e.g. form Ra to Sa to Ra to Sa  etc. versus form Sa to Ra to Sa to Ra  etc, with periods in the fs and as time domains, respectively. The laser induced spatio-temporal symmetries are derived from first principles and illustrated by quantum dynamics simulations.

4.
Chemphyschem ; 25(18): e202400132, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38844417

RESUMO

Grimme's Continuous Chirality Measure ( C C M ${CCM}$ ) was developed for comparisons of the chirality of the electronic wave functions of molecules, typically in their ground states. For example, C C M = 14 . 5 ${CCM=14.5}$ , 1 . 2 ${1.2}$ and 0 . 0 ${0.0}$ for alanine, hydrogen-peroxide, and for achiral molecules, respectively. Well-designed laser pulses can excite achiral molecules from the electronic ground state to time-dependent chiral superposition states, with chirality flips in the femto- or even attosecond (fs or as) time domains. Here we provide a time-dependent extension C C M t ${CCM\left(t\right)}$ of Grimme's C C M ${CCM}$ for trailing the electronic chirality flips. As examples, we consider two laser driven electronic wavefunctions which represent flips between opposite electronic enantiomers of oriented NaK within 4 . 76 f s ${4.76\ {\rm f}{\rm s}}$ and 433 a s ${433\ {\rm a}{\rm s}}$ . The corresponding C C M t ${CCM\left(t\right)}$ vary respectively from 14 . 5 ${14.5}$ or from 13 . 3 ${13.3}$ to 0 . 0 ${0.0}$ , and back.

5.
Phys Chem Chem Phys ; 26(9): 7765-7771, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372974

RESUMO

The responsive mechanisms of cationic quinolinium-vinyl-N,N-dimethylaniline boronate (QVD-B) derivative probes to hydrogen peroxide (H2O2), proteins and DNA/RNA are theoretically investigated in this study. The potential energy curves of QVD-B scanned on a dihedral angle (N+-C-CC) in the first singlet (S1) state exhibit large torsional energy barriers. Additionally, the energy of the lowest unoccupied molecular orbital (LUMO) of an acceptor moiety (-3.14 eV) is lower than that of a donor moiety (-1.13 eV) in QVD-B. This demonstrates that photoinduced electron transfer (PET) quenches the fluorescence of QVD-B, as opposed to the previous report of intramolecular single-bond rotation. After reacting with H2O2, the reaction product of quinoline-vinyl-N,N-dimethylaniline (QVD) turns off the PET pathway and turns on the fluorescence at 550 nm, which is consistent with the experimental results (580 nm). Among the possible configurations of QVD-B that forms with proteins and DNA, the calculated fluorescence values of corresponding twisted QVD-B-P (638 nm) and QVD-B-D (686 nm) are consistent with the experimental results (632 and 688 nm). The frontier molecular orbital and electron-hole analysis show that the charge transfer distance follows the order of QVD (1.88 Å) < QVD-B-P (4.49 Å) < QVD-B-D (6.39 Å), which induces the fluorescence red-shifts of QVD-B-P and QVD-B-D compared to that of QVD. The multi-detection mechanism of the fluorescent probe QVD-B is attributed to PET progress and different degrees of local charge transfer after photoexcitation.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Corantes Fluorescentes/química , Compostos de Anilina/química , Transporte de Elétrons
6.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675638

RESUMO

Herein, a series of ZnO-doped lignin-based carbons (LC/ZnO) were successfully prepared from different types of lignin and used for methyl orange (MO) photocatalytic degradation. The apparent morphology, internal structure, and photoelectric properties of prepared LC/ZnO composites and their effects on subsequent MO photocatalytic degradation were investigated by various characterization techniques. The results showed that the LC/ZnO composites that were prepared in this work mainly consisted of highly dispersed ZnO nanoparticles and lignin-based carbon nano-sheets, which were beneficial for subsequent photogenerated electrons and holes formation, dispersion, and migration. The MO could be significantly degraded with various ZnO-doped lignin-based carbons, especially over the LCSL/ZnO, and the maximum degradation rate was 96.9% within 30 min under the simulated 300w sunlight exposure. The experiments of free radical elimination showed that the photocatalytic degradation of MO over LC/ZnO were a result of the co-action of multiple free radicals, and h+ might play the predominant roles in MO degradation. In addition, the pH of the solution had little effect on MO degradation, and the MO could be effectively degraded even in an alkaline solution of pH = 12.0. The cycling experiments showed that the prepared LC/ZnO had a good stability for MO photodegradation, especially for LCSL/ZnO, even after 5 times recycling, and the degradation rate of MO only dropped from 97.0% to 93.0%. The research not only provided a fundamental theory for the efficient photocatalytic degradation of MO by LC/ZnO composites, but also offered a new insight into lignin valorization.

7.
Molecules ; 29(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124864

RESUMO

Berberine (BBR), as a natural isoquinoline alkaloid, has demonstrated various pharmacological activities, and is widely applied in the treatment of diseases. The quantitative analysis of BBR is important for pharmacological studies and clinical applications. In this work, utilizing the specific interaction between BBR and triplex DNA, a sensitive and selective fluorescent detecting method was established with DNA-templated silver nanoclusters (DNA-AgNCs). After binding with the triplex structure in the template of DNA-AgNCs, BBR quenched the fluorescence of DNA-AgNCs and formed BBR-triplex complex with yellow-green fluorescence. The ratiometric fluorescence signal showed a linear relationship with BBR concentration in a range from 10 nM to 1000 nM, with a detection limit of 10 nM. Our method exhibited excellent sensitivity and selectivity, and was further applied in BBR detection in real samples.


Assuntos
Berberina , DNA , Nanopartículas Metálicas , Prata , Espectrometria de Fluorescência , Berberina/química , Berberina/análise , Prata/química , Nanopartículas Metálicas/química , DNA/química , DNA/análise , Espectrometria de Fluorescência/métodos , Fluorescência , Limite de Detecção , Humanos
8.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998989

RESUMO

Cholesteric liquid crystal microcapsules (CLCMs) are used to improve the stability of liquid crystals while ensuring their stimulus response performance and versatility, with representative applications such as sensing, anticounterfeiting, and smart fabrics. However, the reflectivity and angular anisotropy decrease because of the anchoring effect of the polymer shell matrix, and the influence of particle size on this has not been thoroughly studied. In this study, the effect of synthesis technology on microcapsule particle size was investigated using a complex coalescence method, and the effect of particle size on the reflectivity and angular anisotropy of CLCMs was investigated in detail. A particle size of approximately 66 µm with polyvinyl alcohol (PVA, 1:1) exhibited a relative reflectivity of 16.6% and a bandwidth of 20 nm, as well as a narrow particle size distribution of 22 µm. The thermosetting of microcapsules coated with PVA was adjusted and systematically investigated by controlling the mass ratio. The optimized mass ratio of microcapsules (66 µm) to PVA was 2:1, increasing the relative reflectivity from 16.6% (1:1) to 32.0% (2:1) because of both the higher CLCM content and the matching between the birefringence of the gelatin-arabic shell system and PVA. Furthermore, color based on Bragg reflections was observed in the CLCM-coated ortho-axis and blue-shifted off-axis, and this change was correlated with the CLCM particle size. Such materials are promising for anticounterfeiting and color-based applications with bright colors and angular anisotropy in reflection.

9.
Inorg Chem ; 62(5): 2470-2479, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36701249

RESUMO

The state-of-the-art transition-based electrocatalysts in alkaline media generally suffer from unavoidable surface reconstruction during oxygen evolution reaction measurements, leading to the collapse and loss of the crystalline matrix. Low potential discharge offers a gentle way for surface reconstruction and thus realizes the manipulation of the real active site. Nevertheless, the absence of a fundamental understanding focus on this discharge region renders the functional phase, either the crystalline or amorphous matrix, for the controllable reconstruction still undecidable. Herein, we report a scenario to employ different crystalline matrices as electrocatalysts for discharge region reconstruction. The representative low crystalline Ni2P (LC-Ni2P) possesses a relatively weak surface structure compared with highly crystalline or amorphous Ni2P (HC-Ni2P or A-Ni2P), which contributes abundant oxygen vacancies after the discharge process. The fast discharge behavior of LC-Ni2P leads to the uniform distribution of these vacancies and thus endows the inner interface with reactant activating functionality. A high increase in current density of 36.7% is achieved at 2.32 V (vs RHE) for the LC-Ni2P electrode. The understanding of the discharge behavior in this study, on different crystalline matrices, presents insights into the establishment of controllable surface reconstruction for an effective oxygen evolution reaction.

10.
Phys Chem Chem Phys ; 25(14): 10071-10081, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971073

RESUMO

The development of singlet fission (SF) is greatly hindered by the severe shortage of the types and numbers of SF materials. Here, essential energy conditions and SF-related competitive processes of a series of BPEA derivatives, which are a kind of new promising SF material, are investigated theoretically. Encouraging advantages and interesting laws of key energy conditions of those derivatives were found and potential BPEA derivatives were predicted. Those derivatives present mild exothermic SF processes with 0.3-0.4 eV free energies (ΔE(S1-2T1)) consistently. Their lowest triplet states (T1) are stable and totally enter into the ideal energy window (≥1.0 eV), which is beneficial for achieving the maximum efficiency of PCE. Their large ΔE(T2-2T1) can suppress the higher-state annihilation of T1 well. The E(S1) and ΔE(S1-2T1) of the derivatives are sensitive to both the slip patterns of the dimer and ending substituents. Terminal substituents with both strong electron-withdrawing and electron-donating abilities can lower E(S1), and decreases in the former are more obvious due to the larger intramolecular charge transfer. Interestingly, it is found firstly that the terminal substituent modulation effect on E(S1) and ΔE(S1-2T1) is more effective when large longitudinal slips are included in their stacking modes. The reason is that the direction of the transition dipole moments (µs1) is along X, and large longitudinal slips will bring about the approach of positive and negative charge centers of monomers, and lead to large Davydov splitting. By further evaluation of important radiation and non-radiation processes, it is predicted that the BPEA-based derivatives, which have rigid -Cl, -Br, or -CN terminals and include large longitudinal slips in their crystal packing, are expected to achieve excellent SF performances. Our work provides useful ideas for developing or optimizing acene-derivative SF materials with high efficiency.

11.
J Chem Phys ; 158(12): 124306, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003767

RESUMO

We develop a general method to study ultrafast laser induced charge migration in molecules, which includes both electronic and nuclear dynamics. The method can be applied to relatively large systems. A detailed analysis of charge migration in pyrene is performed. Decoherences and recoherences of charge migration in pyrene are found and explained in terms of nuclear motions.

12.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513178

RESUMO

The aim of this work is to effectively combine the advantages of polymer and ceramic nanoparticles and improve the comprehensive performance of lithium-ion batteries (LIBs) diaphragm. A flexible film composed of electro-spun P(VDF-HFP) nanofibers covered by a layer of mesoporous silica (P(VDF-HFP)@SiO2) was synthesized via a sol-gel transcription method, then used as a scaffold to absorb organic electrolyte to make gel a electrolyte membrane (P(VDF-HFP)@SiO2-GE) for LIBs. The P(VDF-HFP)@SiO2-GE presents high electrolyte uptake (~1000 wt%), thermal stability (up to ~350 °C), ionic conductivity (~2.6 mS cm-1 at room temperature), and excellent compatibility with an active Li metal anode. Meanwhile, F-doping carbon/silica composite nanofibers (F-C@SiO2) were also produced by carbonizing the P(VDF-HFP)@SiO2 film under Ar and used to make an electrode. The assembled F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li half-cell showed long-cycle stability and a higher discharge specific capacity (340 mAh g-1) than F-C@SiO2|Celgard 2325|Li half-cell (175 mAh g-1) at a current density of 0.2 A g-1 after 300 cycles, indicating a new way for designing and fabricating safer high-performance LIBs.

13.
J Am Chem Soc ; 144(1): 174-183, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931825

RESUMO

Changes in adenosine triphosphate (ATP) and peroxynitrite (ONOO-) concentrations have been correlated in a number of diseases including ischemia-reperfusion injury and drug-induced liver injury. Herein, we report the development of a fluorescent probe ATP-LW, which enables the simultaneous detection of ONOO- and ATP. ONOO- selectively oxidizes the boronate pinacol ester of ATP-LW to afford the fluorescent 4-hydroxy-1,8-naphthalimide product NA-OH (λex = 450 nm, λem = 562 nm or λex = 488 nm, λem = 568 nm). In contrast, the binding of ATP to ATP-LW induces the spirolactam ring opening of rhodamine to afford a highly emissive product (λex = 520 nm, λem = 587 nm). Due to the differences in emission between the ONOO- and ATP products, ATP-LW allows ONOO- levels to be monitored in the green channel (λex = 488 nm, λem = 500-575 nm) and ATP concentrations in the red channel (λex = 514 nm, λem = 575-650 nm). The use of ATP-LW as a combined ONOO- and ATP probe was demonstrated using hepatocytes (HL-7702 cells) in cellular imaging experiments. Treatment of HL-7702 cells with oligomycin A (an inhibitor of ATP synthase) resulted in a reduction of signal intensity in the red channel and an increase in that of the green channel as expected for a reduction in ATP concentrations. Similar fluorescence changes were seen in the presence of SIN-1 (an exogenous ONOO- donor).


Assuntos
Ácido Peroxinitroso
14.
Langmuir ; 38(7): 2248-2256, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133849

RESUMO

A series of lipotripeptide stereoisomers based on alanine were synthesized, and their self-assembling behaviors were studied by means of circular dichroism spectra, ATR-IR, temperature-dependent 1H NMR, and X-ray diffraction patterns. In the mixed solvent of hexafluoroisopropanol/H2O (1/9, v/v), eight lipotripeptides were able to self-assembled into nanoflakes or nanoribbons driven by the hydrophobic association of alkyl chains, intermolecular hydrogen bonding among carboxyl groups at C-terminal and amide groups of alanine moieties in the peptide segment. It was found that the stacking chirality of carbonyl groups was determined by the chirality of alanine residue at C-terminal (i.e., "C-terminal determination" rule). Moreover, our research also highlighted the intermolecular hydrogen bonding on amide groups of each alanine residue, terminal carboxyl as well as the molecular packing structures can be subtly manipulated by changing the stereochemical sequence of peptide segment.


Assuntos
Alanina , Oligopeptídeos , Alanina/química , Dicroísmo Circular , Ligação de Hidrogênio , Oligopeptídeos/química , Peptídeos/química
15.
Anal Chem ; 93(43): 14471-14480, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34693710

RESUMO

α-Naphthyl acetate esterase (α-NAE) and acid α-naphthyl acetate esterase (ANAE), a class of special esterases, are important for lymphocyte typing and immunocompetence-monitoring. As such, the simultaneous detection of α-NAE and ANAE has become a target to effectively improve the accuracy in lymphocyte typing. Therefore, we developed a dual-factor synergistically activated ESIPT-based probe (HBT-NA) to detect α-NAE and ANAE sensitively, rapidly, and simultaneously in a differential manner. HBT-NA exhibits differential fluorescence signal outputs toward small changes of α-NAE and ANAE activities. HBT-NA displays a weak fluorescence signal at 392 nm over a pH range from 6.0 to 7.4. However, when it interacts with α-NAE (0-25 U) at pH = 7.4, the fluorescence intensity at 392 nm enhanced linearly within 60 s (F392 nm/F0392 nm = 0.042 Cα-NAE + 1.1, R2 = 0.99). Furthermore, HBT-NA emits ratiometric fluorescence signals (F505 nm/F392 nm) for ANAE (0-25 U) at pH = 6.0 within 2.0 min, exhibiting a good linear relationship (F505 nm/F392 nm = 0.83CANAE - 1.75, R2 = 0.99). The differential fluorescence signals can be used to simultaneously detect the activities of α-NAE and ANAE in solutions and complex living organisms. More importantly, based on the differential fluorescence signals toward α-NAE and ANAE, T lymphocytes and B lymphocytes could be successfully typed and differentiated among nontyped lymphocytes, facilitating the real-time evaluation of their immune functions using flow cytometry. Hence, HBT-NA could be used for the ultrasensitive detection of the enzyme activities of α-NAE and ANAE, the real-time precise typing of lymphocytes, and the monitoring of immunocompetence.


Assuntos
Naftol AS D Esterase , Linfócitos T , Linfócitos B , Naftóis
16.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158896

RESUMO

Iron-reducing microorganisms (FeRM) play key roles in many natural and engineering processes. Visualizing and isolating FeRM from multispecies samples are essential to understand the in situ location and geochemical role of FeRM. Here, we visualized FeRM by a "turn-on" Fe2+-specific fluorescent chemodosimeter (FSFC) with high sensitivity, selectivity, and stability. This FSFC could selectively identify and locate active FeRM from either pure culture, coculture of different bacteria, or sediment-containing samples. Fluorescent intensity of the FSFC could be used as an indicator of Fe2+ concentration in bacterial cultures. By combining the use of the FSFC with that of a single-cell sorter, we obtained three FSFC-labeled cells from an enriched consortium, and all of them were subsequently shown to be capable of iron reduction; two unlabeled cells were shown to have no iron-reducing capability, further confirming the feasibility of the FSFC.IMPORTANCE Visualization and isolation of FeRM from samples containing multiple species are commonly needed by researchers from different disciplines, such as environmental microbiology, environmental sciences, and geochemistry. However, no available method has been reported. In this study, we provide a method to visualize FeRM and evaluate their activity even at the single-cell level. When this approach is combined with use of a single-cell sorter, FeRM can also be isolated from samples containing multiple species. This method can be used as a powerful tool to uncover the in situ or ex situ role of FeRM and their interactions with ambient microbes or chemicals.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Análise de Célula Única , Fluorescência , Naftalimidas , Oxirredução
17.
Phys Rev Lett ; 127(7): 073902, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459625

RESUMO

The interaction between light and metal nanoparticles enables investigations of microscopic phenomena on nanometer length and ultrashort timescales, benefiting from strong confinement and enhancement of the optical field. However, the ultrafast dynamics of these nanoparticles are primarily investigated by multiphoton photoluminescence on picoseconds or photoemission on femtoseconds independently. Here, we presented two-photon photoluminescence (TPPL) measurements on individual Au nanobipyramids (AuNP) to reveal their ultrafast dynamics by double-pulse excitation on a global timescale ranging from subfemtosecond to tens of picoseconds. Two orders of magnitude photoluminescence enhancement, namely, coherent interference fringes, has been demonstrated. Power-dependent measurements uncovered the transform of the nonlinearity from 1 to 2 when the interpulse delay varied from tens of femtoseconds to tens of picoseconds. We proved that the real intermediate state plays a critical role in the observed phenomena, supported by numerical simulations with a three-state model. Our results provide insight into the role of intermediate states in the ultrafast dynamics of noble metal nanoparticles. The presence of the intermediate states in AuNP and the coherent control of state populations offer interesting perspectives for imaging, sensing, nanophotonics, and in particular, for preparing macroscopic superposition states at room temperature and low-power superresolution stimulated emission depletion microscopy.

18.
Phys Chem Chem Phys ; 23(35): 19146-19149, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524319

RESUMO

La-[B2@B18]-La demonstrates decisive changes of the properties of molecular rotors, from multiple (here 18) equivalent individual global minimum structures to a quantum mechanical unified structure. This affects their geometries, their symmetries (18*C2h → D9d), the generation of energy bands, and high-resolution spectroscopy.

19.
Angew Chem Int Ed Engl ; 60(14): 7759-7769, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33368984

RESUMO

Precise adjustment of microstructure and handedness of chiral nanomaterials is important to regulate their properties and performance. Herein, helical 3-aminophenol formaldehyde resin (APF) nanotubes and corresponding carbonaceous nanotubes with controllable handedness and optical activity were obtained via an external metal ion-mediated supramolecular co-templating method in an enantiomerically pure template system, in which an appropriate amount of Mn2+ (Co2+ or Ni2+ ) with moderate coordination abilities can reverse the spatial arrangement of the phenylglycine-based amphiphilic template molecules through metal coordination. Different stacking modes of coordination complexes in disparate metal ion systems lead to diverse helical senses (diameter and pitch) of the obtained helical APF. In addition, this coordination mode of metal intervention can be applied to other amine-based helical polymer synthesis systems, which paves the way for the design of high-quality chiral nanomaterials with satisfactory physical parameters and properties.

20.
Antonie Van Leeuwenhoek ; 113(11): 1713-1714, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32856220

RESUMO

In the published version of the article, the title should have read 'Duganella rivi sp. nov., Duganella fentianensis sp. nov., Duganella qianjiadongensis sp. nov. and Massilia guangdongensis sp. nov., isolated from subtropical streams in China and reclassification of all species within genus Pseudoduganella'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA