Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 603(7902): 631-636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322249

RESUMO

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

2.
Nature ; 570(7762): 500-503, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243385

RESUMO

Nucleation plays a critical role in many physical and biological phenomena that range from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases1-3. However, nucleation is a challenging process to study experimentally, especially in its early stages, when several atoms or molecules start to form a new phase from a parent phase. A number of experimental and computational methods have been used to investigate nucleation processes4-17, but experimental determination of the three-dimensional atomic structure and the dynamics of early-stage nuclei has been unachievable. Here we use atomic electron tomography to study early-stage nucleation in four dimensions (that is, including time) at atomic resolution. Using FePt nanoparticles as a model system, we find that early-stage nuclei are irregularly shaped, each has a core of one to a few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations are corroborated by molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. Our experimental and molecular dynamics results indicate that a theory beyond classical nucleation theory1,2,18 is needed to describe early-stage nucleation at the atomic scale. We anticipate that the reported approach will open the door to the study of many fundamental problems in materials science, nanoscience, condensed matter physics and chemistry, such as phase transition, atomic diffusion, grain boundary dynamics, interface motion, defect dynamics and surface reconstruction with four-dimensional atomic resolution.

3.
Nano Lett ; 23(8): 3334-3343, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37068052

RESUMO

Obtaining the heterogeneous conformation of small proteins is important for understanding their biological role, but it is still challenging. Here, we developed a multi-tilt nanoparticle-aided cryo-electron microscopy sampling (MT-NACS) technique that enables the observation of heterogeneous conformations of small proteins and applied it to calmodulin. By imaging the proteins labeled by two gold nanoparticles at multiple tilt angles and analyzing the projected positions of the nanoparticles, the distributions of 3D interparticle distances were obtained. From the measured distance distributions, the conformational changes associated with Ca2+ binding and salt concentration were determined. MT-NACS was also used to track the structural change accompanied by the interaction between amyloid-beta and calmodulin, which has never been observed experimentally. This work offers an alternative platform for studying the functional flexibility of small proteins.


Assuntos
Calmodulina , Nanopartículas Metálicas , Microscopia Crioeletrônica/métodos , Ouro/química , Nanopartículas Metálicas/química , Conformação Proteica
4.
Nature ; 542(7639): 75-79, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28150758

RESUMO

Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

5.
Nano Lett ; 22(2): 665-672, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35007087

RESUMO

We determined a full 3D atomic structure of a dumbbell-shaped Pt nanoparticle formed by a coalescence of two nanoclusters using deep learning assisted atomic electron tomography. Formation of a double twin boundary was clearly observed at the interface, while substantial anisotropy and disorder were also found throughout the nanodumbbell. This suggests that the diffusion of interfacial atoms mainly governed the coalescence process, but other dynamic processes such as surface restructuring and plastic deformation were also involved. A full 3D strain tensor was clearly mapped, which allows direct calculation of the oxygen reduction reaction activity at the surface. Strong tensile strain was found at the protruded region of the nanodumbbell, which results in an improved catalytic activity on {100} facets. This work provides important clues regarding the coalescence mechanism and the relation between the atomic structure and catalytic property at the single-atom level.

6.
Nat Mater ; 19(8): 867-873, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32152562

RESUMO

The electronic, optical and chemical properties of two-dimensional transition metal dichalcogenides strongly depend on their three-dimensional atomic structure and crystal defects. Using Re-doped MoS2 as a model system, here we present scanning atomic electron tomography as a method to determine three-dimensional atomic positions as well as positions of crystal defects such as dopants, vacancies and ripples with a precision down to 4 pm. We measure the three-dimensional bond distortion and local strain tensor induced by single dopants. By directly providing these experimental three-dimensional atomic coordinates to density functional theory, we obtain more accurate electronic band structures than derived from conventional density functional theory calculations that relies on relaxed three-dimensional atomic coordinates. We anticipate that scanning atomic electron tomography not only will be generally applicable to determine the three-dimensional atomic coordinates of two-dimensional materials, but also will enable ab initio calculations to better predict the physical, chemical and electronic properties of these materials.

10.
Nat Mater ; 14(11): 1099-103, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26390325

RESUMO

Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. Here, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ∼19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field and the full strain tensor with a 3D resolution of ∼1 nm(3) and a precision of ∼10(-3), which are further verified by density functional theory calculations and molecular dynamics simulations. The ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Modelos Teóricos
11.
Fish Physiol Biochem ; 42(3): 1015-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26746848

RESUMO

To study the absorption characteristics of rhodopsin, a dim-light photoreceptor, in chub mackerel (Scomber japonicus) and the relationship between light wavelengths on the photoresponse, the rod opsin gene was cloned into an expression vector, pMT4. Recombinant opsin was transiently expressed in COS-1 cells and reconstituted with 11-cis-retinal. Cells containing the regenerated rhodopsin were solubilized and subjected to UV/Vis spectroscopic analysis in the dark and upon illumination. Difference spectra from the lysates indicated an absorption maximum of mackerel rhodopsin around 500 nm. Four types of light-emitting diode (LED) modules with different wavelengths (red, peak 627 nm; cyan, 505 nm; blue, 442 nm; white, 447 + 560 nm) were constructed to examine their effects on the photoresponse in chub mackerel. Behavioral responses of the mackerels, including speed and frequencies acclimated in the dark and upon LED illumination, were analyzed using an underwater acoustic camera. Compared to an average speed of 22.25 ± 1.57 cm/s of mackerel movement in the dark, speed increased to 22.97 ± 0.29, 24.66 ± 1.06, 26.28 ± 2.28, and 25.19 ± 1.91 cm/s upon exposure to red, blue, cyan, and white LEDs, respectively. There were increases of 103.48 ± 1.58, 109.37 ± 5.29, 118.48 ± 10.82, and 109.43 ± 3.92 %, respectively, in the relative speed of the fishes upon illumination with red, blue, cyan, and white LEDs compared with that in the dark (set at 100 %). Similar rate of wavelength-dependent responses was observed in a frequency analysis. These results indicate that an LED emitting a peak wavelength close to an absorption maximum of rhodopsin is more effective at eliciting a response to light.


Assuntos
Proteínas de Peixes/genética , Luz , Perciformes/genética , Rodopsina/genética , Animais , Células COS , Chlorocebus aethiops
12.
Nat Commun ; 15(1): 3887, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719801

RESUMO

In the early 2000s, low dimensional ferroelectric systems were predicted to have topologically nontrivial polar structures, such as vortices or skyrmions, depending on mechanical or electrical boundary conditions. A few variants of these structures have been experimentally observed in thin film model systems, where they are engineered by balancing electrostatic charge and elastic distortion energies. However, the measurement and classification of topological textures for general ferroelectric nanostructures have remained elusive, as it requires mapping the local polarization at the atomic scale in three dimensions. Here we unveil topological polar structures in ferroelectric BaTiO3 nanoparticles via atomic electron tomography, which enables us to reconstruct the full three-dimensional arrangement of cation atoms at an individual atom level. Our three-dimensional polarization maps reveal clear topological orderings, along with evidence of size-dependent topological transitions from a single vortex structure to multiple vortices, consistent with theoretical predictions. The discovery of the predicted topological polar ordering in nanoscale ferroelectrics, independent of epitaxial strain, widens the research perspective and offers potential for practical applications utilizing contact-free switchable toroidal moments.

13.
Adv Mater ; : e2402040, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798189

RESUMO

Topological quantum phases are largely understood in weakly correlated systems, which have identified various quantum phenomena, such as the spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, a singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in a van der Waals ferromagnetic semimetal, Fe3GaTe2, with a high Curie temperature of Tc = 347 K is reported. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe3GaTe2, which implies heavy fermion features in this ferromagnetic topological material. The scanning tunneling microscopy, circular dichroism in angle-resolved photoemission spectroscopy, and theoretical calculations support the original electronic features of the material. Thus, low-dimensional Fe3GaTe2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.

14.
Sci Rep ; 12(1): 9068, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641608

RESUMO

Resistive switching devices have been regarded as a promising candidate of multi-bit memristors for synaptic applications. The key functionality of the memristors is to realize multiple non-volatile conductance states with high precision. However, the variation of device conductance inevitably causes the state-overlap issue, limiting the number of available states. The insufficient number of states and the resultant inaccurate weight quantization are bottlenecks in developing practical memristors. Herein, we demonstrate a resistive switching device based on Pt/LaAlO3/SrTiO3 (Pt/LAO/STO) heterostructures, which is suitable for multi-level memristive applications. By redistributing the surface oxygen vacancies, we precisely control the tunneling of two-dimensional electron gas (2DEG) through the ultrathin LAO barrier, achieving multiple and tunable conductance states (over 27) in a non-volatile way. To further improve the multi-level switching performance, we propose a variance-aware weight quantization (VAQ) method. Our simulation studies verify that the VAQ effectively reduces the state-overlap issue of the resistive switching device. We also find that the VAQ states can better represent the normal-like data distribution and, thus, significantly improve the computing accuracy of the device. Our results provide valuable insight into developing high-precision multi-bit memristors based on complex oxide heterostructures for neuromorphic applications.

15.
Nat Commun ; 13(1): 5957, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216798

RESUMO

Nanomaterials with core-shell architectures are prominent examples of strain-engineered materials. The lattice mismatch between the core and shell materials can cause strong interface strain, which affects the surface structures. Therefore, surface functional properties such as catalytic activities can be designed by fine-tuning the misfit strain at the interface. To precisely control the core-shell effect, it is essential to understand how the surface and interface strains are related at the atomic scale. Here, we elucidate the surface-interface strain relations by determining the full 3D atomic structure of Pd@Pt core-shell nanoparticles at the single-atom level via atomic electron tomography. Full 3D displacement fields and strain profiles of core-shell nanoparticles were obtained, which revealed a direct correlation between the surface and interface strain. The strain distributions show a strong shape-dependent anisotropy, whose nature was further corroborated by molecular statics simulations. From the observed surface strains, the surface oxygen reduction reaction activities were predicted. These findings give a deep understanding of structure-property relationships in strain-engineerable core-shell systems, which can lead to direct control over the resulting catalytic properties.

16.
Nat Commun ; 13(1): 5130, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050294

RESUMO

Phase transition points can be used to critically reduce the ionic migration activation energy, which is important for realizing high-performance electrolytes at low temperatures. Here, we demonstrate a route toward low-temperature thermionic conduction in solids, by exploiting the critically lowered activation energy associated with oxygen transport in Ca-substituted bismuth ferrite (Bi1-xCaxFeO3-δ) films. Our demonstration relies on the finding that a compositional phase transition occurs by varying Ca doping ratio across xCa ≃ 0.45 between two structural phases with oxygen-vacancy channel ordering along <100> or <110> crystal axis, respectively. Regardless of the atomic-scale irregularity in defect distribution at the doping ratio, the activation energy is largely suppressed to 0.43 eV, compared with ~0.9 eV measured in otherwise rigid phases. From first-principles calculations, we propose that the effective short-range attraction between two positively charged oxygen vacancies sharing lattice deformation not only forms the defect orders but also suppresses the activation energy through concerted hopping.

17.
Nat Commun ; 12(1): 1962, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785754

RESUMO

Functional properties of nanomaterials strongly depend on their surface atomic structures, but they often become largely different from their bulk structures, exhibiting surface reconstructions and relaxations. However, most of the surface characterization methods are either limited to 2D measurements or not reaching to true 3D atomic-scale resolution, and single-atom level determination of the 3D surface atomic structure for general 3D nanomaterials still remains elusive. Here we demonstrate the measurement of 3D atomic structure at 15 pm precision using a Pt nanoparticle as a model system. Aided by a deep learning-based missing data retrieval combined with atomic electron tomography, the surface atomic structure was reliably measured. We found that <[Formula: see text]> and <[Formula: see text]> facets contribute differently to the surface strain, resulting in anisotropic strain distribution as well as compressive support boundary effect. The capability of single-atom level surface characterization will not only deepen our understanding of the functional properties of nanomaterials but also open a new door for fine tailoring of their performance.

18.
J Phys Chem Lett ; 12(28): 6565-6573, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34251825

RESUMO

Here, we introduce the nanoparticle-aided cryo-electron microscopy sampling (NACS) method to access the conformational distribution of a protein molecule. Two nanogold particles are labeled at two target sites, and the interparticle distance is measured as a structural parameter via cryo-electron microscopy (cryo-EM). The key aspect of NACS is that the projected distance information instead of the global conformational information is extracted from each protein molecule. This is possible because the contrast provided by the nanogold particles is strong enough to provide the projected distance, while the protein itself is invisible due to its low contrast. We successfully demonstrate that various protein conformations, even for small or disordered proteins, which generally cannot be accessed via cryo-EM, can be captured. The demonstrated method with the potential to directly observe the conformational distribution of such systems may open up new possibilities in studying their dynamics at a single-molecule level.

19.
ACS Nano ; 15(3): 3971-3995, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33577296

RESUMO

Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing-structure-property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure-property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni-Co-Mn cathode materials illustrates M3I3's approach to creating libraries of multiscale structure-property-processing relationships. We end with a future outlook toward recent developments in the field of M3I3.

20.
Sci Rep ; 8(1): 8284, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844398

RESUMO

We report 3D coherent diffractive imaging (CDI) of Au/Pd core-shell nanoparticles with 6.1 nm spatial resolution with elemental specificity. We measured single-shot diffraction patterns of the nanoparticles using intense x-ray free electron laser pulses. By exploiting the curvature of the Ewald sphere and the symmetry of the nanoparticle, we reconstructed the 3D electron density of 34 core-shell structures from these diffraction patterns. To extract 3D structural information beyond the diffraction signal, we implemented a super-resolution technique by taking advantage of CDI's quantitative reconstruction capabilities. We used high-resolution model fitting to determine the Au core size and the Pd shell thickness to be 65.0 ± 1.0 nm and 4.0 ± 0.5 nm, respectively. We also identified the 3D elemental distribution inside the nanoparticles with an accuracy of 3%. To further examine the model fitting procedure, we simulated noisy diffraction patterns from a Au/Pd core-shell model and a solid Au model and confirmed the validity of the method. We anticipate this super-resolution CDI method can be generally used for quantitative 3D imaging of symmetrical nanostructures with elemental specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA