Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem X ; 21: 101221, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38379804

RESUMO

Wolfberry, known as Goji berry, is the fruit of Lycium barbarum L. (LB). As a famous functional food and TCM, the cost and efficacy of LB are closely linked to its geographical origin. The present study aimed to establish an effective method for distinguishing LB from different geographical origins. By employing UHPLC-QTOF-MS/MS combined with multivariate analysis, the metabolite profiling of LB (199 batches) obtained from Ningxia, Gansu, Qinghai, and Xinjiang, was evaluated. The results demonstrated that the method effectively distinguished LB from the four regions, with a total of 148 different metabolites being detected. Subsequent assessment using heat maps, Venn analysis, receiver operating characteristics curves and dot plots revealed 21 of these metabolites exhibited exceptional sensitivity and specificity, with under-curve values approaching 1, thus indicating their potential as biomarkers for LB. These findings strongly support the suitability of UHPLC-QTOF-MS/MS-based metabolomics as an effective approach to identify the source of LB.

2.
Pharmacol Rep ; 75(6): 1410-1444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906390

RESUMO

Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.


Assuntos
Endocanabinoides , Humanos , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo
3.
Front Pharmacol ; 13: 1005301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506507

RESUMO

Bai-Mi-Decoction (BMD), which is composed of Eugenia caryophyllata, Myristica fragrans, Moschus berezovskii, and Crocus sativu, is a characteristic TCM multi-herb formula for brain disease. However, the mechanism of protective effects of BMD on ischemic stroke (IS) still has not been clarified. Our study is designed to elucidate the protective effects and underlying mechanisms of BMD on IS by employing pharmacodynamic and serum and brain metabolomic methods. In this experiment, 90 adult male Sprague-Dawley rats were randomly divided into the sham operation group (SHAM, vehicle), middle cerebral artery occlusion-reperfusion injury model group (MCAO/R, vehicle), positive control group (NMDP, 36 mg/kg/day nimodipine), and low (BMDL, 0.805 g/kg/day), moderate (BMDM, 1.61 g/kg/day), and high (BMDH, 3.22 g/kg/day) dosage of BMD prophylactic administration groups. The drugs were dissolved in 0.5% CMC-Na and orally administered to rats with equal volumes (100 g/ml body weight) once a day for 14 consecutive days. Neurological deficit score, cerebral infarct volume, change in body weight, and serum NO, SOD, MDA, GSH, and GSSG levels were determined. Pathological abnormalities using hematoxylin and eosin staining and the expression of VEGF, caspase-3, and NF-κB were analyzed. Furthermore, serum and brain metabolic profiles were explored to reveal the underlying mechanism using UHPLC-QTOF-MS/MS technology. BMD exhibited significant neuroprotective effects on MCAO/R rats. As compared to the MCAO/R model group, it could reduce the neurological deficit score and cerebral infarct volume, increase body weight, enhance GSH, SOD, and GSSG activities, and decrease NO and MDA contents of MCAO/R rats. Meanwhile, BMD could ameliorate pathological abnormalities of MCAO/R rats through reducing neuronal loss, vacuolated spaces, shrunken neurons, and destructed neuron structure, as well as regulating the expression of VEGF, caspase-3, and NF-κB. UHPLC-QTOF-MS/MS-based serum and brain metabolomics analysis found a total of 53 differential metabolites between MCAO/R and SHAM groups, of which 30 were significantly regulated by BMD intervention, and further metabolic pathway analysis implied that the protective effects were mainly associated with amino acid and glycerophospholipid metabolisms. Our pharmacodynamic and metabolomic results revealed the neuroprotective effects of BMD on MCAO/R rats, and the underlying mechanisms were probably related to amino acid and glycerophospholipid metabolisms.

4.
Oxid Med Cell Longev ; 2022: 9365760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312894

RESUMO

Mi-Jian-Chang-Pu formula (MJCPF), composed of Crocus sativus L. and Acorus tatarinowii Schott, is a well-known TCM for treatment of hemiplegia, facial paralysis as well as language dysfunction caused by stroke both in ancient and modern times. By using pharmacodynamics, pharmacokinetics, and metabolomics, our present study discusses whether the combination of individual herbs or major active components of MJCPF possess synergistic neuroprotective effects against ischemic stroke (IS). 108 adult male Sprague-Dawley rats were randomly and equally divided into 9 groups, including sham group (N, vehicle), middle cerebral artery occlusion (MCAO) model group (M, vehicle), positive group (P, 36 mg/kg/day nimodipine), crocin I (A1, 40 mg/kg/day), ß-asarone (B1, 15 mg/kg/day), crocin I + ß-asarone (A1B1, 55 mg/kg/day), C. sativus (A, 580 mg/kg/day), A. tatarinowii (B, 480 mg/kg/day), and C. sativus + A. tatarinowii, also named MJCPF (AB, 1060 mg/kg/day) groups. All drugs were orally administered to rats once a day for 14 consecutive days. Neurological deficit score, cerebral infarct volume, body weight change, TTC, HE and IHC staining, behavioral evaluation, metabolic profiles, and pharmacokinetic parameters were determined. MCAO led to severe brain damage including large infarct volume, more severe brain tissue injury, and worse neurological function as compared to the sham rats. All treatment groups showed a significant neuroprotective effect on MCAO rats. Furthermore, the pharmacodynamics' results demonstrated that MJCPF had a synergistic effect evidenced by small infarct volume, more regular arrangement of neuronal cells, and more improved neural function, and the levels of inflammatory factors were closer to normality. A total of 53 differential metabolites between MCAO and sham groups were screened by integration of serum and brain metabolisms, all of which were restored at varying degrees in treatment. PCA and PLS-DA analysis showed that the levels of differential metabolites treated with MJCPF were closer to the sham group than the individual herb and single compound alone or A1B1 combination. The pharmacokinetic parameters further verified the above results that MJCPF could synergistically promote drug absorption greater than others. Our integrated pharmacodynamics, metabolomics, and pharmacokinetic approach reveals the synergistic effect of MJCPF on treatment of IS, which powerfully contribute to the understanding of scientific connotation of TMC formula.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Masculino , Ratos , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA