Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(6): 3554-3560, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735829

RESUMO

Tabletop X-ray spectroscopy measurements at the carbon K-edge complemented by ab initio calculations are used to investigate the influence of the bromine atom on the carbon core-valence transitions in the bromobenzene cation (BrBz+). The electronic ground state of the cation is prepared by resonance-enhanced two-photon ionization of neutral bromobenzene (BrBz) and probed by X-rays produced by high-harmonic generation (HHG). Replacing one of the hydrogen atoms in benzene with a bromine atom shifts the transition from the 1sC* orbital of the carbon atom (C*) bonded to bromine by ∼1 eV to higher energy in the X-ray spectrum compared to the other carbon atoms (C). Moreover, in BrBz+, the X-ray spectrum is dominated by two relatively intense transitions, 1sC→π* and 1sC*→σ*(C*-Br), where the second transition is enhanced relative to the neutral BrBz. In addition, a doublet peak shape for these two transitions is observed in the experiment. The 1sC→π* doublet peak shape arises due to the spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the two other unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals. The 1sC*→σ* doublet peak shape results from several transitions involving σ* and vibrational C*-Br mode activations following the UV ionization, which demonstrates the impact of the C*-Br bond length on the core-valence transition as well as on the relaxation geometry of BrBz+.

2.
J Phys Chem A ; 124(46): 9532-9541, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33103904

RESUMO

We report a theoretical investigation and elucidation of the X-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization and the measurement of the carbon K-edge spectra of both species using a table-top high-harmonic generation source are described in the companion experimental paper [Epshtein, M.; et al. J. Phys. Chem. A http://dx.doi.org/10.1021/acs.jpca.0c08736]. We show that the 1sC → π transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence of the unpaired (spectator) electron in the π-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC → π* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation. The prominent split structure of the 1sC → π* band of the cation is attributed to the interplay between the coupling of the core → π* excitation with the unpaired electron in the π-subshell and the Jahn-Teller distortion. The calculations attribute most of the splitting (∼1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and we estimate the additional splitting due to structural relaxation to be around ∼0.1-0.2 eV. These results suggest that X-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller effect in the benzene cation.

3.
J Phys Chem A ; 124(46): 9524-9531, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33107734

RESUMO

Ultrafast table-top X-ray spectroscopy at the carbon K-edge is used to measure the X-ray spectral features of benzene radical cations (Bz+). The ground state of the cation is prepared selectively by two-photon ionization of neutral benzene, and the X-ray spectra are probed at early times after the ionization by transient absorption using X-rays produced by high harmonic generation (HHG). Bz+ is well-known to undergo Jahn-Teller distortion, leading to a lower symmetry and splitting of the π orbitals. Comparison of the X-ray absorption spectra of the neutral and the cation reveals a splitting of the two degenerate π* orbitals as well as an appearance of a new peak due to excitation to the partially occupied π-subshell. The π* orbital splitting of the cation, elucidated on the basis of high-level calculations in a companion theoretical paper [Vidal et al. J. Phys. Chem. A. http://dx.doi.org/10.1021/acs.jpca.0c08732], is discovered to be due to both the symmetry distortion and even more dominant spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals.

4.
J Chem Phys ; 153(13): 134108, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33032432

RESUMO

State-specific orbital optimized approaches are more accurate at predicting core-level spectra than traditional linear-response protocols, but their utility had been restricted due to the risk of "variational collapse" down to the ground state. We employ the recently developed square gradient minimization [D. Hait and M. Head-Gordon, J. Chem. Theory Comput. 16, 1699 (2020)] algorithm to reliably avoid variational collapse and study the effectiveness of orbital optimized density functional theory (DFT) at predicting second period element 1s core-level spectra of open-shell systems. Several density functionals (including SCAN, B3LYP, and ωB97X-D3) are found to predict excitation energies from the core to singly occupied levels with high accuracy (≤0.3 eV RMS error) against available experimental data. Higher excited states are, however, more challenging by virtue of being intrinsically multiconfigurational. We thus present a configuration interaction inspired route to self-consistently recouple single determinant mixed configurations obtained from DFT, in order to obtain approximate doublet states. This recoupling scheme is used to predict the C K-edge spectra of the allyl radical, the O K-edge spectra of CO+, and the N K-edge of NO2 with high accuracy relative to experiment, indicating substantial promise in using this approach for the computation of core-level spectra for doublet species [vs more traditional time dependent DFT, equation of motion coupled cluster singles and doubles (EOM-CCSD), or using unrecoupled mixed configurations]. We also present general guidelines for computing core-excited states from orbital optimized DFT.

5.
J Am Chem Soc ; 140(41): 13360-13366, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30247894

RESUMO

A fundamental chlorine-containing radical, CH2Cl, is generated by the ultrafast photodissociation of CH2ICl at 266 nm and studied at both the carbon K edge (∼284 eV) and chlorine L2,3 edge (∼200 eV) by femtosecond X-ray transient absorption spectroscopy. The electronic structure of CH2Cl radical is characterized by a prominent new carbon 1s X-ray absorption feature at lower energy, resulting from a transition to the half-filled frontier carbon 2p orbital (singly occupied molecular orbital of the radical; SOMO). Shifts of other core-to-valence absorption features upon photodissociation of CH2ICl to yield ·CH2Cl indicate changes in the energies of core-level transitions of carbon and chlorine to the σ*(C-Cl) valence orbital. When the C-I bond breaks, loss of the electron-withdrawing iodine atom donates electron density back to carbon and shields the carbon 1s core level, resulting in a ∼0.8 eV red shift of the carbon 1s to σ*(C-Cl) transition. Meanwhile, the 2p inner shell of the chlorine atom in the radical is less impacted by the iodine atom removal, as demonstrated by the observation of a ∼0.6 eV blue shift of the transitions at the chlorine L2,3 edges, mainly due to the stronger C-Cl bond and the increased energy of the σ*(C-Cl) orbital. The results suggest that the shift in the carbon 1s orbital is greater than the shift in the σ*(C-Cl) orbital upon going from the closed-shell molecule to the radical. Ab initio calculations using the equation of motion coupled-cluster theory establish rigorous assignment and positions of the X-ray spectral features in the parent molecule and the location of the SOMO in the CH2Cl radical.

6.
J Am Chem Soc ; 140(39): 12538-12544, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30204442

RESUMO

The ultraviolet-induced photochemistry of five-membered heterocyclic rings often involves ring opening as a prominent excited-state relaxation pathway. The identification of this particular photoinduced mechanism, however, presents a challenge for many experimental methods. We show that femtosecond X-ray transient absorption spectroscopy at the carbon K-edge (∼284 eV) provides core-to-valence spectral fingerprints that enable the unambiguous identification of ring-opened isomers of organic heterocycles. The unique differences in the electronic structure between a carbon atom bonded to the oxygen in the ring versus a carbon atom set free of the oxygen in the ring-opened product are readily apparent in the X-ray spectra. Ultrafast ring opening via C-O bond fission occurs within ∼350 fs in 266-nm photoexcited furfural, as evidenced by fingerprint core (carbon 1s) electronic transitions into a nonbonding orbital of the open-chain carbene intermediate at 283.3 eV. The lack of recovery of the 1sπ* ground-state depletion in furfural at 286.4 eV indicates that internal conversion to the ground state is a minor channel. These experimental results, augmented by recent advances in the generation of isolated attosecond pulses at the carbon K-edge, will pave the way for probing ring-opened conical intersection dynamics in the future.

7.
Nat Commun ; 12(1): 5003, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408141

RESUMO

Electronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized 1B2u (ππ*) (S2) and 1B3u (nπ*) (S1) states, the participation of the optically dark 1Au (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite 1Au (nπ*) and 1B3u (nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The 1Au (nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.

8.
J Phys Chem Lett ; 10(6): 1382-1387, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30835480

RESUMO

Disulfide bonds are pivotal for the structure, function, and stability of proteins, and understanding ultraviolet (UV)-induced S-S bond cleavage is highly relevant for elucidating the fundamental mechanisms underlying protein photochemistry. Here, the near-UV photodecomposition mechanisms in gas-phase dimethyl disulfide, a prototype system with a S-S bond, are probed by ultrafast transient X-ray absorption spectroscopy. The evolving electronic structure during and after the dissociation is simultaneously monitored at the sulfur L1,2,3-edges and the carbon K-edge with 100 fs (FWHM) temporal resolution using the broadband soft X-ray spectrum from a femtosecond high-order harmonics light source. Dissociation products are identified with the help of ADC and RASPT2 electronic-structure calculations. Rapid dissociation into two CH3S radicals within 120 ± 30 fs is identified as the major relaxation pathway after excitation with 267 nm radiation. Additionally, a 30 ± 10% contribution from asymmetric CH3S2 + CH3 dissociation is indicated by the appearance of CH3 radicals, which is, however, at least partly the result of multiphoton excitation.

9.
J Chem Theory Comput ; 9(7): 2930-8, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583976

RESUMO

Density functional theory (DFT) is a widely used method for predicting equilibrium geometries of organometallic compounds involving transition metals, with a wide choice of functional and basis set combinations. A study of the role of basis set size in predicting the structural parameters can be insightful with respect to the effectiveness of using small basis sets to optimize larger molecular systems. For many organometallic systems, the metal-metal and metal-carbon distances are the most important structural features. In this study, we compare the equilibrium metal-ligand and metal-metal distances of six transition metal carbonyl compounds predicted by the Hood-Pitzer double-ζ polarization (DZP) basis set, against those predicted employing the standard correlation consistent cc-pVXZ (X = D,T,Q) basis sets, for 35 different DFT methods. The effects of systematically increasing the basis set size on the structural parameters are carefully investigated. The Mn-Mn bond distance in Mn2(CO)10 shows a greater dependence on basis set size compared to the other M-M bonds. However, the DZP predictions for re(Mn-Mn) are closer to experiment than those obtained with the much larger cc-pVQZ basis set. Our results show that, in general, DZP basis sets predict structural parameters with an accuracy comparable to the triple and quadruple-ζ basis sets. This finding is very significant, because the quadruple-ζ basis set for Mn2(CO)10 includes 1308 basis functions, while the equally effective double-ζ set (DZP) includes only 366 basis functions. Overall, the DZP M06-L method predicts structures that are very consistent with experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA