Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 617(7962): 717-723, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37225883

RESUMO

Flexible solar cells have a lot of market potential for application in photovoltaics integrated into buildings and wearable electronics because they are lightweight, shockproof and self-powered. Silicon solar cells have been successfully used in large power plants. However, despite the efforts made for more than 50 years, there has been no notable progress in the development of flexible silicon solar cells because of their rigidity1-4. Here we provide a strategy for fabricating large-scale, foldable silicon wafers and manufacturing flexible solar cells. A textured crystalline silicon wafer always starts to crack at the sharp channels between surface pyramids in the marginal region of the wafer. This fact enabled us to improve the flexibility of silicon wafers by blunting the pyramidal structure in the marginal regions. This edge-blunting technique enables commercial production of large-scale (>240 cm2), high-efficiency (>24%) silicon solar cells that can be rolled similarly to a sheet of paper. The cells retain 100% of their power conversion efficiency after 1,000 side-to-side bending cycles. After being assembled into large (>10,000 cm2) flexible modules, these cells retain 99.62% of their power after thermal cycling between -70 °C and 85 °C for 120 h. Furthermore, they retain 96.03% of their power after 20 min of exposure to air flow when attached to a soft gasbag, which models wind blowing during a violent storm.

2.
Proc Natl Acad Sci U S A ; 121(17): e2401281121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621121

RESUMO

Ferromagnesian silicates are the dominant constituents of the Earth's mantle, which comprise more than 80% of our planet by volume. To interpret the low shear-velocity anomalies in the lower mantle, we need to construct a reliable transformation diagram of ferromagnesian silicates over a wide pressure-temperature (P-T) range. While MgSiO3 in the perovskite structure has been extensively studied due to its dominance on Earth, phase transformations of iron silicates under the lower mantle conditions remain unresolved. In this study, we have obtained an iron silicate phase in the perovskite (Pv) structure using synthetic fayalite (Fe2SiO4) as the starting material under P-T conditions of the lower mantle. Chemical analyses revealed an unexpectedly high Fe/Si ratio of 1.72(3) for the Pv phase in coexistence with metallic iron particles, indicating incorporation of about 25 mol% Fe2O3 in the Pv phase with an approximate chemical formula (Fe2+0.75Fe3+0.25)(Fe3+0.25Si0.75)O3. We further obtained an iron silicate phase in the postperovskite (PPv) structure above 95 GPa. The calculated curves of compressional (VP) and shear velocity (VS) of iron silicate Pv and PPv as a function of pressure are nearly parallel to those of MgSiO3, respectively. To the best of our knowledge, the iron silicate Pv and PPv are the densest phases among all the reported silicates stable at P-T conditions of the lower mantle. The high ferric iron content in the silicate phase and the spin-crossover of ferric iron at the Si-site above ~55 GPa should be taken into account in order to interpret the seismic observations. Our results would provide crucial information for constraining the geophysical and geochemical models of the lower mantle.

3.
Cancer Immunol Immunother ; 73(1): 18, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240856

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor worldwide. Within HCC's tumor microenvironment, focal adhesion kinase (FAK) plays a critical role. Regulatory T cells (Treg) modulate the polarization of tumor-associated macrophages , but the relationship between FAK, Treg cells, and macrophages remains underexplored. Phellinus linteus (PL) shows promise as a treatment for HCC due to its pharmacological effects. This study aimed to explore the relationship between FAK and Treg-macrophages and to assess whether PL could exert a protective effect through the FAK process in HCC. Initially, C57BL/6-FAK-/- tumor-bearing mice were utilized to demonstrate that FAK stimulates HCC tumor development. High dosages (200 µM) of FAK and the FAK activator ZINC40099027 led to an increase in Treg (CD4+CD25+) cells, a decrease in M1 macrophages (F4/80+CD16/32+, IL-12, IL-2, iNOS), and an increase in M2 macrophages (F4/80+CD206+, IL-4, IL-10, Arg1, TGF-ß1). Additionally, FAK was found to encourage cell proliferation, migration, invasion, and epithelial-mesenchymal transition while inhibiting apoptosis in HepG2 and SMMC7721 cells. These effects were mediated by the PI3K/AKT1/Janus Kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase (p38 MAPK)/Jun N-terminal Kinase (JNK) signaling pathways. Furthermore, PL exhibited a potent antitumor effect in vivo in a dose-dependent manner, reducing FAK, Treg cells, and M2 macrophages, while increasing M1 macrophages. This effect was achieved through the inhibition of the PI3K/AKT/JAK/STAT3, and p38/JNK pathways. Overall, our findings suggest that FAK promotes HCC via Treg cells that polarize macrophages toward the M2 type through specific signaling pathways. PL, acting through FAK, could be a protective therapy against HCC.


Assuntos
Basidiomycota , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linfócitos T Reguladores/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Inflamm Res ; 73(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147125

RESUMO

OBJECTIVE: Here, we explored the phenotype and function of MAIT cells in the peripheral blood of patients with HSP. METHODS: Blood samples from HSP patients and HDs were assessed by flow cytometry and single-cell RNA sequencing to analyze the proportion, phenotype, and function of MAIT cells. Th-cytokines in the serum of HSP patients were analyzed by CBA. IgA in cocultured supernatant was detected by CBA to analyze antibody production by B cells. RESULTS: The percentage of MAIT cells in HSP patients was significantly reduced compared with that in HDs. Genes related to T cell activation and effector were up-regulated in HSP MAIT cells, indicating a more activated phenotype. In addition, HSP MAIT cells displayed a Th2-like profile with the capacity to produce more IL-4 and IL-5, and IL-4 was correlated with IgA levels in the serum of HSP patients. Furthermore, CD40L was up-regulated in HSP MAIT cells, and CD40L+ MAIT cells showed an increased ability to produce IL-4 and to enhance IgA production by B cells. CONCLUSION: Our data demonstrate that MAIT cells in HSP patients exhibit an activated phenotype. The enhanced IL-4 production and CD40L expression of MAIT cells in HSP patients could take part in the pathogenesis of HSP.


Assuntos
Vasculite por IgA , Células T Invariantes Associadas à Mucosa , Humanos , Formação de Anticorpos , Ligante de CD40 , Imunoglobulina A , Interleucina-4
5.
Small ; : e2309523, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072626

RESUMO

The separator located between the positive and negative electrodes not only provides a lithium-ion transmission channel but also prevents short circuits for direct contact of electrodes. The inferior dimension thermostability of commercial polyolefin separators intensifies the thermal runaway of batteries under abuse such as short circuits, overcharge, and so on. a polyvinylidene fluoride/polyether imide (PVDF/PEI) separator with high thermal stability in which the high thermostable PEI microspheres are evenly dispersed in the PVDF film matrix and also located in the micro holes of the PVDF film is developed. They not only function as strong skeleton that enables the rare shrink of the separator at 200 °C avoiding short circuit but also act as ball valve that blocks the lithium ion transmission channel at 150 °C interrupting the further heat aggregation. Thus, the LiNi0.6 Co0.2 Mn0.2 O2 /Li batteries exhibit high cycle stability of 96.5% capacity retention after 100 cycles at 0.2C and 80°C. Further, the LiNi0.6 Co0.2 Mn0.2 O2 /graphite pouch cells are constructed and deliver good safety performance without smoke release and catching fire after the nail penetration test.

6.
Opt Express ; 30(23): 41264-41270, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366608

RESUMO

In this paper, we propose a dynamic transmission structure based on the coupling reconfiguration of spoof surface plasmon polaritons (SSPPs) in a 2D coplanar grating. By embedding a VO2 film into the signal line, the dynamic transmission is realized by reconfiguring the coupling of terahertz waves from quasi-TEM waves to SSPPs. The analysis shows that the transmission can be modulated in almost the entire band of the SSPPs, which further benefits a promising group delay due to the weak dispersion characteristic in the frequency region much lower than the cut-off frequency of SSPPs. In addition, for the dynamic modulation caused by the coupling reconfiguration, only rather a small area of VO2 film is needed to break the robustness of the 2D coplanar grating. Therefore, the coupling reconfiguration mechanism proposed in this paper facilitates the realization of an easily on-chip integrated dynamic SSPPs transmission structure with ultra-large bandwidth, and low group delay time difference. Accordingly, the presented mechanism will play a positive role in promoting the development of terahertz dynamic devices.

7.
Opt Express ; 29(17): 26983-26994, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615121

RESUMO

Smith-Purcell radiation (SPR) is a kind of electromagnetic wave radiation that happens when an energetic beam of electrons passes very closely parallel to the surface of a ruled optical diffraction grating. The frequency of radiation waves varies in the upper and lower space of the grating for different electron velocity, satisfying the SPR relationship. In this study, a Fano-resonant metasurface was proposed to steer the direction of the SPR waves at the fixed resonant frequency by changing the velocity of the electron beam without varying the geometric parameters or adding extra coupling structure. The maximum emission power always locates at the resonant frequency by utilizing the integration of the Poynting vector. The relative radiated efficiency can reach to a maximum value of 91% at the frequency of 441 GHz and the efficiency curve has a dip when the direction of SPR is nearly vertical due to the high transmission. There is a great consistence of steering radiation angle from 65 degrees to 107 degrees by altering the velocity of electron beam from 0.6c to 0.95c both in analytical calculation and PIC (particle-in-cell of CST) simulation at terahertz frequencies, where c is the speed of light in vacuum. Furthermore, the destructive interference of Fano resonance between the magnetic mode and the toroidal mode shows the underlying physics of steering SPR in a fixed frequency. Our study indicates that the proposed structure can produce direction-tunable THz radiation waves at resonant frequency by varying the velocity of the electron beam, which is promising for various applications in a compact, tunable, high power millimeter wave and THz wave radiation sources.

8.
Opt Express ; 28(21): 30502-30512, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115050

RESUMO

Surface plasmon polaritons have been extensively studied owing to the promising characteristics of near fields. In this paper, the cascade coupling of graphene surface plasmon polaritons (GSPPs) originating from cascading excitation and multiple coupling within a composite graphene-dielectric stack is presented. GSPPs confined to graphene layers are distributed in the entire stack as waveguide modes. Owing to the near-field enhancement effect and large lifetime of the GSPPs, the terahertz wave-graphene interaction is significantly enhanced, which induces an ultra-extraordinary optical transmission (UEOT) together with the reported negative dynamic conductivity of graphene. Furthermore, owing to cascade coupling, the UEOT exhibits considerable transmission enhancement, up to three orders of magnitude, and frequency and angle selections. Based on the key characteristics of cascade coupling, the mode density and coupling intensity of GSPPs, the dependences of the number of graphene layers in the stack, the thickness of dielectric buffers, and the effective Fermi levels of the graphene on the UEOT are also analyzed. The proposed mechanism can pave the way for using layered plasmonic materials in electric devices, such as amplifiers, sensors, detectors, and modulators.

9.
Opt Express ; 28(6): 8830-8842, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225501

RESUMO

Recently, the negative absorption in graphene-based metamaterials became a very attractive direction of THz electronic devices. Here we propose a graphene-dielectric hybrid meta-structure to realize photo-induced enhanced negative absorption in the THz regime, which results from strong graphene-light interaction. The negative absorption is derived from the degradation of the conductivity of graphene under optical pump. Meanwhile, the graphene-dielectric hybrid meta-structure introduces dispersion relation and resonance mode, which can couple with the incident wave to construct a strong resonance. In this case, both the dispersion of the propagating waves and resonance are contributed to the graphene-light interaction and enhance the negative absorption, in which the resonance coupling determines the distribution of negative absorption, and the maximum is dominated by dispersion. More importantly, compared with the previous work, the negative absorption is increased by nearly 100 times by adopting this meta-structure.

10.
Opt Express ; 28(5): 6395-6407, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225888

RESUMO

Coding metasurfaces have drawn great attention for its digital wave manipulation in deep subwavelength-scale in the last decade, more sophisticated and flexible coding strategies suitable for terahertz wavefront manipulations are becoming more urgently demanded. Due to its rigidity in phase gradient division, both phase gradient metasurfaces and conventional phase coding technique lack the flexibility to expand applications in a large field of view and accurate targeting. This study presents a generalized coding method by precisely reconfiguring the array factor based on the phased array theory and metasurface concept, which can be applied for anomalous scattering and ultrafine radiation patterning. According to our quantitative analysis on the relationship between the deflected angles and the supercell spacing, a fractional coding method for arbitrary phase gradient distribution has been attained by logically discretizing the spacing scale of supercells. By switching on different coding sequences or incident frequencies, a single beam to multiple beam scanning in an expanded angular range with minimal step can be achieved on the fractional phase-coding metasurfaces. As a proof of concept, the 2-bit coding metasurfaces arranged by four fractional coding sequences have been fabricated and measured, demonstrating a consecutive single-beam steering pattern ranging from 22° to 74° in 0.34-0.5 THz. Crosswise verified by the good accordance among numerical prediction, simulation and experiment, the proposed coding strategy paves a path to delicate beam regulation for high-resolution imaging and detection.

11.
Mol Cell ; 47(3): 469-83, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883624

RESUMO

Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypophosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased transepithelial resistance, and lateral domain shortening. Conversely, GAB1 overexpression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multilumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Polaridade Celular/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CACO-2 , Proteínas de Ciclo Celular/genética , Cães , Células HEK293 , Humanos , Rim/citologia , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/genética , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/genética
12.
Nano Lett ; 19(11): 7588-7597, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31398289

RESUMO

Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the -3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.

13.
Nano Lett ; 15(5): 3501-6, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25919444

RESUMO

The past few decades have witnessed a substantial increase in terahertz (THz) research. Utilizing THz waves to transmit communication and imaging data has created a high demand for phase and amplitude modulation. However, current active THz devices, including modulators and switches, still cannot meet THz system demands. Double-channel heterostructures, an alternative semiconductor system, can support nanoscale two-dimensional electron gases (2DEGs) with high carrier concentration and mobility and provide a new way to develop active THz devices. In this Letter, we present a composite metamaterial structure that combines an equivalent collective dipolar array with a double-channel heterostructure to obtain an effective, ultrafast, and all-electronic grid-controlled THz modulator. Electrical control allows for resonant mode conversion between two different dipolar resonances in the active device, which significantly improves the modulation speed and depth. This THz modulator is the first to achieve a 1 GHz modulation speed and 85% modulation depth during real-time dynamic tests. Moreover, a 1.19 rad phase shift was realized. A wireless free-space-modulation THz communication system based on this external THz modulator was tested using 0.2 Gbps eye patterns. Therefore, this active composite metamaterial modulator provides a basis for the development of effective and ultrafast dynamic devices for THz wireless communication and imaging systems.

14.
Opt Express ; 22(9): 11070-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921805

RESUMO

Applying the photoexcitation characteristics of vanadium dioxide (VO(2)), a dynamic resonant terahertz (THz) functional device with the combination of VO(2) film and dual-resonance metamaterial was suggested to realize the ultrafast external spatial THz wave active manipulation. The designed metamaterial realizes a pass band at 0.28-0.36 THz between the dual-resonant frequencies, and the VO(2) film is applied to control the transmittance of the spatial THz wave. More than an 80% modulation depth has been observed in the statics experiment, and the dynamic experimental results illustrate that this active metamaterial realizes up to a 1 MHz amplitude modulation signal loaded on a 0.34 THz carrier wave without any low noise amplified devices. The electromagnetic properties and photoinduced dynamic characteristics of this structure may have many potential applications in THz functional components, including modulators, intelligent switches, and sensors.

15.
Opt Lett ; 39(7): 1709-12, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686585

RESUMO

A dual-resonance frequency selective surface filter in the THz range that uses bilayer modified complementary metamaterial structures is proposed in this Letter. The bandpass filter, with dual bands centered at 0.315 and 0.48 THz, uses a single crystal quartz substrate and is simulated, fabricated, and measured. To minimize the manufacturing risks of working with fragile and thin quartz substrates, efforts have been made to improve the transmission frequency response features at realizable substrate thicknesses. Experimental results from 0.1 to 0.6 THz measured by THz time-domain spectroscopy show excellent agreement with the simulation results.

16.
Waste Manag ; 174: 328-339, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091657

RESUMO

Co-gasification is crucial for large-scale clean conversion of coal and sludge. In this study, the effects of municipal sewage sludge (MSS, Fe2O3:48.11 %) and pharmaceutical sewage sludge (PSS, Fe2O3: 67.80 %) on ash fusion temperature (AFT) of high AFT Xiangyuan coal (XY) were explored using an AFT analysis, X-ray fluorescence spectrometry, X-ray diffraction, scanning electronic microscopy, and thermodynamics FactSage calculation. The results showed that when MSS or PSS ash mass ratios reached 20 % or 16 % (for XY mixtures, the mass ratio of MSS or PSS should be >5.81 wt% or 5.07 wt%), respectively, the AFT met the requirement of liquid-slag discharge for entrained-flow bed gasification. Under a reducing atmosphere (6:4, CO/CO2, volume ratio), Fe2+ destroyed the bridging-oxygen bonds in the network structure and generated low melting-point (MP) hercynite (FeAl2O4). This resulted in the AFT decreases in the XY mixtures with the additions of PSS or MSS. Meanwhile, the high calcium content (CaO: 13.40 %) easily reacted with Al2O3 and SiO2 and formed anorthite (CaAl2SiO8), which inhibited high-MP mullite formation and decreased the mixed XY AFT. With the increasing SS mass ratio, the surface of the ash sample and thermodynamic FactSage calculation were in good agreement with the experimental results.


Assuntos
Carvão Mineral , Ferro , Esgotos/química , Cinza de Carvão , Temperatura , Dióxido de Silício
17.
Chin J Integr Med ; 30(4): 339-347, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37943489

RESUMO

OBJECTIVE: To explore the anti-tumor effect of safflower yellow (SY) against hepatocellular carcinoma (HCC) and the underlying potential mechanism. METHODS: An in vitro model was established by mixing Luc-Hepa1-6 cells and CD3+CD8+ T cells, followed by adding programmed cell death protein 1 (PD-1) antibody (Anti-mPD-1) with or without SY. The apoptosis was detected by flow cytometry and the level of inflammatory cytokines was determined by enzyme-linked immunosorbent assay. The protein levels of programmed cell death 1 ligand 1 (PD-L1), chemokine ligand (CCL5), C-X-C motif chemokine ligand 10 (CXCL10) were measured by Western blot. An in situ animal model was established in mice followed by treatment with anti-mPD-1 with or without SY. Bioluminescence imaging was monitored with an AniView 100 imaging system. To establish the FAK-overexpressed Luc-Hepa1-6 cells, cells were transfected with adenovirus containing pcDNA3.1-FAK for 48 h. RESULTS: The fluorescence intensity, apoptotic rate, release of inflammatory cytokines, and CCL5/CXCL10 secretion were dramatically facilitated by anti-mPD-1 (P<0.01), accompanied by an inactivation of PD-1/PD-L1 axis, which were extremely further enhanced by SY (P<0.05 or P<0.01). Increased fluorescence intensity, elevated percentage of CD3+CD8+ T cells, facilitated release of inflammatory cytokines, inactivated PD-1/PD-L1 axis, and increased CCL5/CXCL10 secretion were observed in Anti-mPD-1 treated mice (P<0.01), which were markedly enhanced by SY (P<0.05 or P<0.01). Furthermore, the enhanced effects of SY on inhibiting tumor cell growth, facilitating apoptosis and inflammatory cytokine releasing, suppressing the PD-1/PD-L1 axis, and inducing the CCL5/CXCL10 secretion in Anti-mPD-1 treated mixture of Luc-Hepa1-6 cells and CD3+CD8+ T cells were abolished by FAK overexpression (P<0.01). CONCLUSION: SY inhibited the progression of HCC by mediating immunological tolerance through inhibiting FAK.


Assuntos
Carcinoma Hepatocelular , Chalcona/análogos & derivados , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Ligantes , Camundongos Endogâmicos , Citocinas/metabolismo
18.
Nat Commun ; 15(1): 4333, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773099

RESUMO

Earth's lower mantle is a potential water reservoir. The physical and chemical properties of the region are in part controlled by the Fe3+/ΣFe ratio and total iron content in bridgmanite. However, the water effect on the chemistry of bridgmanite remains unclear. We carry out laser-heated diamond anvil cell experiments under hydrous conditions and observe dominant Fe2+ in bridgmanite (Mg, Fe)SiO3 above 105 GPa under the normal geotherm conditions corresponding to depth > 2300 km, whereas Fe3+-rich bridgmanite is obtained at lower pressures. We further observe FeO in coexistence with hydrous NiAs-type SiO2 under similar conditions, indicating that the stability of ferrous iron is a combined result of H2O effect and high pressure. The stability of ferrous iron in bridgmanite under hydrous conditions would provide an explanation for the nature of the low-shear-velocity anomalies in the deep lower mantle. In addition, entrainment from a hydrous dense layer may influence mantle plume dynamics and contribute to variations in the redox conditions of the mantle.

19.
Bioresour Technol ; 401: 130708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636878

RESUMO

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.


Assuntos
Benzopiranos , Biocombustíveis , Biotransformação , Diatomáceas , Diatomáceas/metabolismo , Benzopiranos/metabolismo , Ácido Selenioso/metabolismo , Microalgas/metabolismo
20.
Micromachines (Basel) ; 14(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37893358

RESUMO

This paper proposes a low-noise amplifier (LNA) for terahertz communication systems. The amplifier is designed based on 90 nm InP high-electron-mobility transistor (HEMT) technology. In order to achieve high gain of LNA, the proposed amplifier adopts a five-stage amplification structure. At the same time, the use of staggered tuning technology has achieved a large bandwidth of terahertz low-noise amplification. In addition, capacitors are used for interstage isolation, sector lines are used for RF bypass, and Microstrip is used to design matching circuits. The entire LNA circuit was validated using accurate electromagnetic simulation. The simulation results show that at 140 GHz, the small signal gain is 25 dB, the noise figure is 4.4 dB, the input 1 dB compression point is -19 dBm, and the 3 dB bandwidth reaches 60 GHz (110-170 GHz), which validates the effectiveness of the design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA