Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(14): e2307990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988702

RESUMO

Developing porous adsorbents for efficient separation of C4 olefins is significant but challenging in the petrochemical industry due to their similar molecular sizes and physical properties. The separation efficiency is often limited when separating C4 olefins by a single separation mechanism. Herein, an ultramicroporous yttrium-based MOF, Y-dbai, is reported featuring cage-like pores connected by small windows, for recognition and efficient separation of C4 olefins through a synergistic effect of thermodynamic and kinetic mechanisms. At 298 K and 1 bar, the adsorption capacities of Y-dbai for C4H6, 1-C4H8, and i-C4H8 are 2.88, 1.07, and 0.14 mmol g-1, respectively, indicating a molecular sieving effect toward i-C4H8. The C4H6/i-C4H8 and 1-C4H8/i-C4H8 uptake selectivities of Y-dbai are 20.6 and 7.6, respectively, outperforming most of the reported adsorbents. The static and kinetic adsorption experiments coupled with DFT calculations indicate the separation should be attributed to a combined effect of thermodynamically and kinetically controlled mechanism. Breakthrough experiments have confirmed the excellent separation capability of Y-dbai toward C4H6/1-C4H8, C4H6/i-C4H8, and C4H6/1-C4H8/i-C4H8 mixtures.

2.
Angew Chem Int Ed Engl ; 62(41): e202310672, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563093

RESUMO

The purification of p-xylene (pX) from its xylene isomers represents a challenging but important industrial process. Herein, we report the efficient separation of pX from its ortho- and meta- isomers by a microporous calcium-based metal-organic framework material (HIAM-203) with a flexible skeleton. At 30 °C, all three isomers are accommodated but the adsorption kinetics of o-xylene (oX) and m-xylene (mX) are substantially slower than that of pX, and at an elevated temperature of 120 °C, oX and mX are fully excluded while pX can be adsorbed. Multicomponent column breakthrough measurements and vapor-phase/liquid-phase adsorption experiments have demonstrated the capability of HIAM-203 for efficient separation of xylene isomers. Ab initio calculations have provided useful information for understanding the adsorption mechanism.

3.
Chem Sci ; 15(22): 8530-8535, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846381

RESUMO

The high structural diversity and porosity of metal-organic frameworks (MOFs) promote their applications in selective gas adsorption. The development of robust MOFs that are stable against corrosive SO2 remains a daunting challenge. Here, we report a highly robust aluminum-based MOF (HIAM-330) built on a 4-connected Al3(OH)2(COO)4 cluster and 8-connected octacarboxylate ligand with a (4,8)-connected scu topology. It exhibits a fully reversible SO2 uptake of 12.1 mmol g-1 at 298 K and 1 bar. It is capable of selective capture of SO2 over other gases (CO2, CH4, and N2) with high adsorption selectivities of 60, 330, and 3537 for equimolar mixtures of SO2/CO2, SO2/CH4, and SO2/N2, respectively, at 298 K and 1 bar. Breakthrough measurements verified the capability of HIAM-330 for selective capture of SO2 (2500 ppm) over CO2 or N2. High-resolution synchrotron X-ray powder diffraction of SO2 loaded HIAM-330 revealed the binding domains of adsorbed SO2 molecules and host-guest interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA