Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Pacing Clin Electrophysiol ; 46(9): 1056-1065, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498567

RESUMO

BACKGROUND: Due to the anatomically adjacent relationship between the left atrium (LA) and esophagus, energy delivery on the posterior wall of LA is limited. The aim of this study was to evaluate the feasibility of a novel esophageal retractor (SAFER) with an inflatable C-curve balloon during atrial fibrillation (AF) ablation. METHOD: Nine patients underwent AF ablation assisted with the SAFER. After inflation, the esophagus was deviated laterally away from the intended ablation site of the posterior wall under local anesthesia. The extent of mechanical esophageal deviation (MED) was evaluated under fluoroscopy, defined as the shortest distance from the trailing esophageal edge to the closest point of the ablation line. Gastroscopy was performed before and after ablation. The target ablation index used in all LA sites including the posterior wall was 400-450 after effective MED. All adverse events during the periprocedural period were recorded. RESULTS: The mean deviation distance achieved 16.2 ± 9.6 mm away from the closest ablation point of the pulmonary vein lesion set. With respect to the individual left and right pulmonary vein lesion sets, the deviation distance was 19.7 ± 11.5 and 12.7 ± 6.8 mm, respectively. The extent of deviation was 0 to 5 mm, 5.1 to 10 mm, or >10 mm in 0(0%), 7(38.9%), and 11(61.1%), respectively. Procedural success was achieved in all patients without acute reconnection. There was only one esophageal complication which manifested as esophageal erosion and this patient experienced throat pain possibly related to the SAFER retractor with no clinical sequelae. CONCLUSION: Esophageal deviation with the novel eccentric balloon is a novel feasible choice during AF ablation, enabling adequate energy delivery to the posterior wall of LA. Additional prospective randomized controlled studies are required for further validation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Estudos Prospectivos , Esôfago , Átrios do Coração , Fluoroscopia , Ablação por Cateter/métodos , Veias Pulmonares/cirurgia
2.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375344

RESUMO

Aqueous zinc ion batteries (AZIBs) are promising electrochemical energy storage devices due to their high theoretical specific capacity, low cost, and environmental friendliness. However, uncontrolled dendrite growth poses a serious threat to the reversibility of Zn plating/stripping, which impacts the stability of batteries. Therefore, controlling the disordered dendrite growth remains a considerable challenge in the development of AZIBs. Herein, a ZIF-8-derived ZnO/C/N composite (ZOCC) interface layer was constructed on the surface of the Zn anode. The homogeneous distribution of zincophilic ZnO and the N element in the ZOCC facilitates directional Zn deposition on the (002) crystal plane. Moreover, the conductive skeleton with a microporous structure accelerates Zn2+ transport kinetics, resulting in a reduction in polarization. As a result, the stability and electrochemical properties of AZIBs are improved. Specifically, the ZOCC@Zn symmetric cell sustains over 1150 h at 0.5 mA cm-2 with 0.25 mA h cm-2, while the ZOCC@Zn half-cell achieves an outstanding Coulombic efficiency of 99.79% over 2000 cycles. This work provides a simple and effective strategy for improving the lifespan of AZIBs.

3.
Opt Express ; 30(23): 41774-41783, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366645

RESUMO

Based on the dual-resonance principle around the dispersion turning point, a scheme of chiral long-period fiber gratings (CLPGs) formed by twisting a high-birefringence (Hi-Bi) fiber is herein proposed to realise ultra-broadband flat-top circular polarizers. The coupling bandwidth is approximately seven times larger than that of traditional CLPGs. In addition, by introducing chirp characteristics in these CLPGs, an ultra-broadband flat-top circular polarizer with ∼200 nm@3 dB was conveniently achieved. Subsequently, by optimising the chirped CLPGs, a circular polarizer with a bandwidth extinction ratio of approximately 30 dB and a high level of ∼100 nm at 1 dB was realised. It was shown that the mode-controlling performances of the CLPGs can be remarkably improved, which has significant applications in light-field regulation. Finally, for the first time, it was proved that the CLPG cannot generate a vortex beam.

4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232942

RESUMO

The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni1Co2S4 and Ni2Co1Al LDH exhibit an outstanding alkali stability, and Ni2Co1S4 exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni2Co1S4. Ni2Co1S4 showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni1Co2S4, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties.


Assuntos
Álcalis , Hidróxidos , Cobalto/química , Hidróxidos/química , Sulfetos
5.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744883

RESUMO

Considering the electromagnetic protection needs of important ground buildings, exploring the electromagnetic wave (EMW) absorption performance of manganese ore powder (MOP) building materials is an effective way to overcome its low added value and difficulty in popularizing. Here, choosing filling ratios commonly used in building materials such as autoclaved bricks, MOP/paraffin samples with 20%, 40%, and 60% mass fraction of MOP were prepared, and electromagnetic properties were analyzed at 2−18 GHz using the coaxial method. The results show that 60 wt% sample has the best absorption performance, with a minimum reflection loss (RLmin) value of −22.06 dB at 15.04 GHz, and the effective absorption bandwidth (EAB, RL < −10 dB) reaches 4.16 GHz at a 7.65 mm absorber thickness, covering most of the Ku-band region. The excellent microwave absorption performance of MOP is due to its multi-oxide forming multi-interface structure and rough surface, which can not only form abundant dipole and interfacial polarization under the action of EMW, but also reflect and scatter the incident EMW, prolong the transmission path, and enhanced the absorption of microwaves. This study demonstrates that MOP building materials can have excellent microwave absorption properties, thus becoming a new way to address harmful manganese residue; for example, autoclaved bricks, which can not only improve the added value of manganese residue building materials but also can be consumed on a large scale. It provides a new idea to solve the harm of manganese residue.


Assuntos
Manganês , Micro-Ondas , Pós , Dióxido de Silício
6.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897949

RESUMO

Reasonable structural design and composition control are the dominant factors for tuning the electromagnetic absorbing properties of materials. In this paper, microspheres composed of NiO, Ni, and Co3O4 nanoparticles (NCMO) were successfully synthesized using a mild oxidation method. Benefiting from the multi-component composition and a unique microstructure, the RLmin of CNMO can reach -46.8 dB at 17 GHz, with an effective absorption bandwidth of 4.1 GHz (13.9-18 GHz). The absorbing properties and the absorbing mechanism analysis showed that the microsphere-structured NCMO composed of multi-component nanoparticles enhanced the interface polarization, thereby improving the absorption performance. This research provides a new avenue for MOF-derived oxide materials with excellent electromagnetic wave absorbing properties.

7.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164331

RESUMO

The porous and biomimetic cobalt silicate@diatomite (Co2SiO4@diatomite) was successfully synthesized by a two-step method, including the hydrothermal method and calcination to improve the electromagnetic wave absorption property. Different hydrothermal times were well-tuned for Co2SiO4@diatomite composites with different loadings of Co2SiO4. Interestingly, the Co2SiO4@diatomite composites (6 h, 25 wt%) had a smaller minimum reflection loss. Moreover, the minimum reflection loss (RLmin) could reach -12.03 dB at 16.64 GHz and the matched absorber thickness was 10 mm, while the effective absorption bandwidth (EAB, RL ≤ -10 dB) could be 1.92 GHz. In principle, such findings indicate that Co2SiO4@diatomite nanocomposites could be a promising candidate for high-efficiency microwave absorption capability.

8.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615427

RESUMO

Recently, the development of composite materials composed of magnetic materials and MXene has attracted significant attention. However, the thickness and microwave absorption performance of the composite is still barely satisfactory. In this work, the C-N@NiFe2O4@MXene/Ni nanocomposites were successfully synthesized in situ by hydrothermal and calcination methods. Benefiting from the introduction of the carbon-nitrogen(C-N) network structure, the overall dielectric properties are improved effectively, consequently reducing the thickness of the composite while maintaining excellent absorption performance. As a result, the minimum reflection loss of C-N@NiFe2O4@MXene/Ni can reach -50.51 dB at 17.3 GHz at an ultralow thickness of 1.5 mm, with an effective absorption bandwidth of 4.95 GHz (13.02-18 GHz). This research provides a novel strategy for materials to maintain good absorption performance at an ultralow thickness level.

9.
Molecules ; 27(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011367

RESUMO

In this work, spherical flower-shaped composite carbonyl iron powder@MnO2 (CIP@MnO2) with CIP as the core and ultrathin MnO2 nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO2 composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO2 composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < -20 dB). The sample filled with 40 wt% has the best comprehensive performance, the minimum reflection loss is -63.87 dB at 6.32 GHz, and the effective absorption bandwidth (RL < -20 dB) reaches 7.28 GHz in the range of 5.92 GHz-9.28 GHz and 11.2 GHz-15.12 GHz, which covers most C and X bands. Such excellent microwave absorption performance of the spherical flower-like CIP@MnO2 composites is attributed to the combined effect of multiple beneficial components and the electromagnetic attenuation ability generated by the special spherical flower-like structure. Furthermore, this spherical flower-like core-shell shape aids in the creation of discontinuous networks, which improve microwave incidence dispersion, polarize more interfacial charges, and allow electromagnetic wave absorption. In theory, this research could lead to a simple and efficient process for producing spherical flower-shaped CIP@MnO2 composites with high absorption, a wide band, and oxidation resistance for a wide range of applications.

10.
J Am Chem Soc ; 142(9): 4213-4222, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32041401

RESUMO

Oxide-/hydroxide-derived copper electrodes exhibit excellent selectivity toward C2+ products during the electrocatalytic CO2 reduction reaction (CO2RR). However, the origin of such enhanced selectivity remains controversial. Here, we prepared two Cu-based electrodes with mixed oxidation states, namely, HQ-Cu (containing Cu, Cu2O, CuO) and AN-Cu (containing Cu, Cu(OH)2). We extracted an ultrathin specimen from the electrodes using a focused ion beam to investigate the distribution and evolution of various Cu species by electron microscopy and electron energy loss spectroscopy. We found that at the steady stage of the CO2RR, the electrodes have all been reduced to Cu0, regardless of the initial states, suggesting that the high C2+ selectivities are not associated with specific oxidation states of Cu. We verified this conclusion by control experiments in which HQ-Cu and AN-Cu were pretreated to fully reduce oxides/hydroxides to Cu0, and the pretreated electrodes showed even higher C2+ selectivity compared with their unpretreated counterparts. We observed that the oxide/hydroxide crystals in HQ-Cu and AN-Cu were fragmented into nanosized irregular Cu grains under the applied negative potentials. Such a fragmentation process, which is the consequence of an oxidation-reduction cycle and does not occur in electropolished Cu, not only built an intricate network of grain boundaries but also exposed a variety of high-index facets. These two features greatly facilitated the C-C coupling, thus accounting for the enhanced C2+ selectivity. Our work demonstrates that the use of advanced characterization techniques enables investigating the structural and chemical states of electrodes in unprecedented detail to gain new insights into a widely studied system.

11.
Nat Mater ; 16(5): 532-536, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218922

RESUMO

Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

12.
J Am Chem Soc ; 136(24): 8654-60, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24901372

RESUMO

In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.

13.
Water Res ; 249: 120988, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070341

RESUMO

Groundwater, the main freshwater resource for humans, has been widely contaminated with nitrate from fertilizers. Here, we report a new and chemical-free strategy to prevent nitrate leaching from soil based on the enrichment of electroactive bacteria, mainly of the genus Geobacter, with bioelectro-barriers, which leads to a nearly 100 % interception of nitrate and partly conserves reactive nitrogen in the form of weakly mobile ammonium by dissimilatory nitrate reduction to ammonium (DNRA). G. sulfurreducens was recognized to efficiently secrete nitrite reductase (NrfA) for rapid DNRA because it lacks nitrate reductase, which inhibits DNRA by competing with nitrite and producing toxic intracellular nitric oxide. With an increase in G. sulfurreducens abundance, near-zero nitrate leaching and 3-fold greater N retention was achieved. Periodic application of weak electricity to the bioelectro-barrier ensured the dominance of G. sulfurreducens in the microbial community and therefore its ability to consistently prevent nitrate leaching. The ability of G. sulfurreducens to intercept nitrate was further demonstrated in more diverse agricultural soils, providing a novel way to prevent nitrate leaching and conserve bioavailable nitrogen in the soil, which has broader implications for both sustainable agriculture and groundwater protection.


Assuntos
Compostos de Amônio , Água Subterrânea , Humanos , Nitratos/análise , Desnitrificação , Solo , Nitrogênio/análise
14.
J Physiol Biochem ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632209

RESUMO

Ovalbumin (OVA) is a major allergen in eggs and could induce severe allergic reactions in sensitive individuals, where the innate immune system works as a regulator. The mechanism of how innate immunity adjusts to food allergy is relatively well-studied, however, the effects of allergen uptake on the innate immune system remain unclear. Therefore, the Caenorhabditis elegans (C. elegans) model was utilized to assess the effects of OVA on its innate immune system. OVA enhanced the immune response of C. elegans with higher survival rates under Pseudomonas aeruginosa infection. Moreover, sustaining OVA treatment improved the health states that were reflected in the prolonged lifespan, alleviated oxidative stress, accelerated growth, and promoted motility. RNA-sequencing analysis and the slow-killing assays in the mutants of insulin/IGF-1 signaling (IIS)-related genes confirmed that IIS was necessary for OVA to regulate innate immunity. Besides, OVA activated SKN-1 temporarily and facilitated the nuclear localization of DAF-16 for improving immunity and health status in C. elegans. Together, OVA could enhance the innate immune responses via DAF-16 and SKN-1 pathways in the IIS of C. elegans, and this work will provide novel insights into the regulation of innate immunity by OVA in higher organisms.

15.
J Affect Disord ; 348: 124-134, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918574

RESUMO

OBJECTIVE: Cognitive impairments are prevalent in late-life depression (LLD). However, it remains unclear whether there are concurrent brain oscillation alterations in resting condition across varying level of depression severity. This cross-sectional study aims to investigate the characteristics of altered resting-state oscillations, including power spectrum and functional connectivity, and their association with the cognitive impairments in LLD with different depression severity. METHODS: A total of 65 patients with LLD and 40 elder participants without depression were recruited. Global cognition and subtle cognitive domains were evaluated. A five-minute resting-state electroencephalography (EEG) was conducted under eyes-closed conditions. Measurements included the ln-transformed absolute power for power spectrum analysis and the weighted phase lag index (wPLI) for functional connectivity analysis. RESULTS: Attentional and executive dysfunction were exhibited in Moderate-Severe LLD group. Enhanced posterior upper gamma power was observed in both LLD groups. Additionally, enhanced parietal and fronto-parietal/occipital theta connectivity were observed in Moderate-Severe LLD group, which were associated with the attentional impairment. LIMITATIONS: Limitations include a small sample size, concomitant medication use, and a relatively higher proportion of females. CONCLUSIONS: Current study observed aberrant brain activity patterns in LLD across different levels of depression severity, which were linked to cognitive impairments. The altered posterior brain oscillations may be trait marker of LLD. Moreover, cognitive impairments and associated connectivity alterations were exhibited in moderate-severe group, which may be a state-like marker of moderate-to severe LLD. The study deepens understanding of cognitive impairments with the associated oscillation changes, carrying implications for neuromodulation targets in LLD.


Assuntos
Disfunção Cognitiva , Depressão , Feminino , Humanos , Idoso , Depressão/psicologia , Estudos Transversais , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Eletroencefalografia
16.
Neuropsychiatr Dis Treat ; 20: 1201-1210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860214

RESUMO

Background: Late-life depression (LLD) is characterized by disrupted brain networks. Resting-state networks in the brain are composed of both stable and transient topological structures known as microstates, which reflect the dynamics of the neural activities. However, the specific pattern of EEG microstate in LLD remains unclear. Methods: Resting-state EEG were recorded for 31 patients with episodic LLD (eLLD), 20 patients with remitted LLD (rLLD) and 32 healthy controls (HCs) using a 64-channel cap. The clinical data of the patients were collected and the 17-Item Hamilton Rating Scale for Depression (HAMD) was used for symptom assessment. Duration, occurrence, time coverage and syntax of the four microstate classes (A-D) were calculated. Group differences in EEG microstates and the relationship between microstates parameters and clinical features were analyzed. Results: Compared with NC and patients with rLLD, patients with eLLD showed increased duration and time coverage of microstate class D. Besides, a decrease in occurrence of microstate C and transition probability between microstate B and C was observed. In addition, the time coverage of microstate D was positively correlated with the total score of HAMD, core symptoms, and miscellaneous items. Conclusion: These findings suggest that disrupted EEG microstates may be associated with the pathophysiology of LLD and may serve as potential state markers for the monitoring of the disease.

17.
J Geriatr Cardiol ; 20(10): 707-715, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970223

RESUMO

BACKGROUND: Patients with atrial fibrillation (AF) and prior stroke history have a high risk of cardiovascular events despite anticoagulation therapy. It is unclear whether catheter ablation (CA) has further benefits in these patients. METHODS: AF patients with a previous history of stroke or systemic embolism (SE) from the prospective Chinese Atrial Fibrillation Registry study between August 2011 and December 2020 were included in the analysis. Patients were matched in a 1:1 ratio to CA or medical treatment (MT) based on propensity score. The primary outcome was a composite of all-cause death or ischemic stroke (IS)/SE. RESULTS: During a total of 4.1 ± 2.3 years of follow-up, the primary outcome occurred in 111 patients in the CA group (3.3 per 100 person-years) and in 229 patients in the MT group (5.7 per 100 person-years). The CA group had a lower risk of the primary outcome compared to the MT group [hazard ratio (HR) = 0.59, 95% CI: 0.47-0.74, P < 0.001]. There was a significant decreasing risk of all-cause mortality (HR = 0.43, 95% CI: 0.31-0.61, P < 0.001), IS/SE (HR = 0.73, 95% CI: 0.54-0.97, P = 0.033), cardiovascular mortality (HR = 0.32, 95% CI: 0.19-0.54, P < 0.001) and AF recurrence (HR = 0.33, 95% CI: 0.30-0.37, P < 0.001) in the CA group compared to that in the MT group. Sensitivity analysis generated consistent results when adjusting for time-dependent usage of anticoagulants. CONCLUSIONS: In AF patients with a prior stroke history, CA was associated with a lower combined risk of all-cause death or IS/SE. Further clinical trials are warranted to confirm the benefits of CA in these patients.

18.
J Colloid Interface Sci ; 603: 799-809, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34246089

RESUMO

Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g-1 at a current density of 1 A g-1, a good rate capability of 68.4% retention at 10 A g-1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g-1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg-1 and a maximum power density of 9375 W kg-1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.

19.
ACS Omega ; 3(11): 15966-15974, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458237

RESUMO

A novel tetraphenylethylene-based ladder network (MP1) made by polycondensation reaction from 4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetrakis(benzene-1,2-diol) and 2,3,5,6-tetrafluoroterephthalonitrile and its COOH-functionalized analogue (MP2) were synthesized for the first time. Their structures were confirmed by solid-state nuclear magnetic resonance (13C cross-polarization magic angle spinning), Fourier transform infrared spectroscopy, and elementary analysis. MP1 exhibited a high Brunauer-Emmett-Teller surface area (1020 m2 g-1), whereas the COOH-functionalized MP2 showed a much smaller surface area (150 m2 g-1) but displayed a more uniform pore size distribution. Because of the high density of nitrile groups in the network polymers of intrinsic microporosity (PIMs) and strong interaction with quadrupole CO2 molecules, MP1 exhibited a high CO2 adsorption capacity of 4.2 mmol g-1 at 273 K, combined with an isosteric heat of adsorption (Q st) of 29.6 kJ mol-1. The COOH-functionalized MP2 showed higher Q st of 34.2 kJ mol-1 coupled with a modest CO2 adsorption capacity of 2.2 mmol g-1. Both network PIMs displayed high theoretical ideal adsorbed solution theory CO2/N2 selectivities (51 and 94 at 273 K vs 34 and 84 at 298 K for MP1 and MP2, respectively). The high selectivities of MP1 and MP2 were confirmed by experimental column breakthrough experiments with CO2/N2 selectivity values of 23 and 45, respectively. Besides the promising CO2 capture and CO2/N2 selectivity properties, MP1 also demonstrated high sorption capacity for toxic volatile organic vapors. At 298 K and a relative pressure of 0.95, benzene and toluene sorption uptakes reached 765 and 1041 mg g-1, respectively. Moreover, MP1 also demonstrated some potential for adsorptive separation of xylene isomers with adsorptive selectivity of 1.75 for m-xylene/o-xylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA