Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 599(7886): 599-604, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819685

RESUMO

Amorphous materials inherit short- and medium-range order from the corresponding crystal and thus preserve some of its properties while still exhibiting novel properties1,2. Due to its important applications in technology, amorphous carbon with sp2 or mixed sp2-sp3 hybridization has been explored and prepared3,4, but synthesis of bulk amorphous carbon with sp3 concentration close to 100% remains a challenge. Such materials inherit the short-/medium-range order of diamond and should also inherit its superior properties5. Here, we successfully synthesized millimetre-sized samples-with volumes 103-104 times as large as produced in earlier studies-of transparent, nearly pure sp3 amorphous carbon by heating fullerenes at pressures close to the cage collapse boundary. The material synthesized consists of many randomly oriented clusters with diamond-like short-/medium-range order and possesses the highest hardness (101.9 ± 2.3 GPa), elastic modulus (1,182 ± 40 GPa) and thermal conductivity (26.0 ± 1.3 W m-1 K-1) observed in any known amorphous material. It also exhibits optical bandgaps tunable from 1.85 eV to 2.79 eV. These discoveries contribute to our knowledge about advanced amorphous materials and the synthesis of bulk amorphous materials by high-pressure and high-temperature techniques and may enable new applications for amorphous solids.

2.
Inorg Chem ; 61(48): 19274-19281, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383131

RESUMO

Copper(I) thiocyanate (CuSCN) is a p-type semiconductor with exceptional properties for optoelectronic devices such as solar cells, thin-film transistors , organic light-emitting diodes, etc. Understanding the structure-optical property relationships in CuSCN is critical for its optoelectronic applications. Herein, high-pressure techniques combined with theoretical calculations are used to thoroughly investigate the structural and optical changes of CuSCN upon compression. Under high pressure, CuSCN exhibits a progressive decrease of the band gap with different rates, which is relevant to the ß to α phase transition in CuSCN and the subsequent amorphization through polymerization. UV-vis spectra measurements reveal a reduction in band gap from 3.4 to 1.3 eV upon decompression to ambient conditions. Such transitions could be attributed to the pressure-induced rotation of CuNS3 tetrahedron and bond length shrinkage. The severe distortion of the polyhedral units prompts breakdown of the structure and thus the amorphization, which is quenchable to ambient conditions. Our study demonstrates that high pressure can be utilized to adjust the structure and optical characteristics of CuSCN compound, potentially extending the material's uses in optoelectronic devices.

3.
J Am Chem Soc ; 142(16): 7584-7590, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32250116

RESUMO

According to the laws of thermodynamics, materials normally exhibit contraction or expansion along the directions of the applied pressure or tension. Here, we show that a man-made cocrystal of a metallofullerene and highly energetic cubane, with strained sp3 bonding, may exhibit an anomalous negative volume compressibility. In this cocrystal, the freely rotating fullerene Sc3N@C80 acts as a structural building block while static cubane molecules fill the lattice interstitial sites. Under high pressure, Sc3N@C80 keeps stable and preserves the crystalline framework of the materials, while the cubane undergoes a progressive configurational transformation above 6.5 GPa, probably promoted by charge transfer from fullerene to cubane. A further configurational change of the cubane into a low-density configuration at higher pressure results in an anomalous pressure-driven lattice expansion of the cocrystal (∼1.8% volume expansion). Such unusual negative compressibility has previously only been predicted by theory and suggested to appear in mechanical metamaterials.

4.
Phys Rev Lett ; 124(6): 065701, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109099

RESUMO

Graphite is known to transform into diamond under dynamic compression or under combined high pressure and high temperature, either by a concerted mechanism or by a nucleation mechanism. However, these mechanisms fail to explain the recently reported discovery of diamond formation during ambient temperature compression combined with shear stress. Here we report a new transition pathway for graphite to diamond under compression combined with shear, based on results from both theoretical simulations and advanced experiments. In contrast to the known model for thermally activated diamond formation under pressure, the shear-induced diamond formation takes place during the decompression process via structural transitions. At a high pressure with large shear, graphite transforms into ultrastrong sp^{3} phases whose structures depend on the degree of shear stress. These metastable sp^{3} phases transform into either diamond or graphite upon decompression. Our results explain several recent experimental observations of low-temperature diamond formation. They also emphasize the importance of shear stress for diamond formation, providing new insight into the graphite-diamond transformation mechanism.

5.
Phys Rev Lett ; 118(24): 245701, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665670

RESUMO

Design and synthesis of new carbon allotropes have always been important topics in condensed matter physics and materials science. Here we report a new carbon allotrope, formed from cold-compressed C_{70} peapods, which most likely can be identified with a fully sp^{3}-bonded monoclinic structure, here named V carbon, predicted from our simulation. The simulated x-ray diffraction pattern, near K-edge spectroscopy, and phonon spectrum agree well with our experimental data. Theoretical calculations reveal that V carbon has a Vickers hardness of 90 GPa and a bulk modulus ∼400 GPa, which well explains the "ring crack" left on the diamond anvils by the transformed phase in our experiments. The V carbon is thermodynamically stable over a wide pressure range up to 100 GPa, suggesting that once V carbon forms, it is stable and can be recovered to ambient conditions. A transition pathway from peapod to V carbon has also been suggested. These findings suggest a new strategy for creating new sp^{3}-hybridized carbon structures by using fullerene@nanotubes carbon precursor containing odd-numbered rings in the structures.

6.
Nanotechnology ; 28(3): 035704, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27941221

RESUMO

Onion-like carbon nanospheres (OCNSs) with an average diameter of 43 nm were produced on a large scale via a combustion method and examined as an anode material for lithium ion batteries. The OCNSs exhibit a remarkable electrochemical cycling behavior and a capacity much higher than that of graphite. The capacity increases significantly with increasing charge-discharge cycles and reaches a value of 178% of the initial value (from 586 mA h g-1to 1045 mA h g-1) after 200 cycles. Further investigation provides unambiguous experimental evidence that such a remarkable capacity increase is related to the stable onion-like structure of the OCNSs and to the existence of large numbers of disordered/short graphitic fragments, which gradually provide more active sites for Li ion storage. The unique electrochemical performance of OCNSs provides a new way to design a high-performance anode material for rechargeable batteries.

7.
J Chem Phys ; 145(12): 124319, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782680

RESUMO

We present a joint experimental and theoretical study on the high-pressure behavior of bromine confined in the one-dimensional (1D) nanochannels of zeolite AlPO4-5 (AFI) single crystals. Raman scattering experiments indicate that loading bromine into AFI single crystals can lead to the formation of bromine molecular chains inside the nanochannels of the crystals. High-pressure Raman and X-ray diffraction studies demonstrate that high pressure can increase the length of the confined bromine molecular chains and modify the inter- and intramolecular interactions of the molecules. The confined bromine shows a considerably different high-pressure behavior to that of bulk bromine. The pressure-elongated bromine molecular chains can be preserved when the pressure is reduced to ambient pressure. Theoretical simulations explain the experimental results obtained from the Raman spectroscopy and X-ray diffraction studies. Furthermore, we find that the intermolecular distance between confined bromine molecules gradually becomes comparable to the intramolecular bond length in bromine molecules upon compression. This may result in the dissociation of the bromine molecules and the formation of 1D bromine atomic chains at pressures above 24 GPa. Our study suggests that the unique nanoconfinement has a considerable effect on the high-pressure behavior of bromine, and the confined bromine species concomitantly enhance the structural stability of the host AFI single crystals.

8.
J Chem Phys ; 142(3): 034702, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25612720

RESUMO

Raman spectra of onion-like carbon nanospheres (OCNSs) have been studied under pressure up to 48 GPa. A transformation related to a change from sp(2) to sp(3) bonding of carbons in OCNSs was observed at pressures above 20 GPa. The Raman spectra exhibit some vibrational features similar to those of the theoretically proposed Z-carbon phase of cold-compressed graphite, while the transition pressure is obviously higher than that for graphite. In contrast to the transformations in compressed graphite, interlayer bonds are formed on the nanoscale between buckled layers in OCNSs under pressure due to the concentric configuration, and sp(2)-sp(3) conversion is incomplete even up to 48 GPa. This is confirmed by TEM observations on the decompressed samples. Moreover, the onion-like carbon structure is extremely stable and can be recovered even after a compression cycle to 48 GPa. This high stability, beyond that of other sp(2) carbon materials, is related to the unique onion-like configuration and to the interlayer bonding. The transformed material should have excellent mechanical properties so that it can sustain very high pressure.

9.
Phys Chem Chem Phys ; 16(18): 8301-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24658134

RESUMO

Iodine molecules confined in the elliptical nanochannels of AlPO4-11 crystals can only rotate in the plane passing through the major axis of the elliptical cross-section due to size confinement. This leads to different dynamic behaviors of iodine from those confined in round channels of AlPO4-5 crystals under ambient conditions. In this work, we use high pressure technology to manipulate the nanoscaled iodine species confined in the elliptical channels of AlPO4-11 crystals. In situ polarized Raman measurements and theoretical simulations have been carried out to study the topological geometry of the confined iodine species upon compression. It was found that the population of iodine chains could significantly increase at the expense of standing iodine molecules under pressure up to 6 GPa, due to the pressure-induced rotation of standing iodine molecules. Besides, the contraction of the host framework along the channel axis favors the formation of iodine chains and strengthens the interaction of neighbouring molecules in a chain, consequently leading to a frequency redshift of the corresponding Raman mode. The different transformation dynamics of the confined iodine in AlPO4-11 crystals upon compression, compared to those in round channels of AlPO4-5 crystals, have been discussed in terms of the unique nanochannels that offer the quasi two-dimensional nanoscaled confinement environment.

10.
ACS Nano ; 18(26): 17053-17064, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38870206

RESUMO

Second harmonic generation (SHG) in van der Waals (vdW) materials has garnered significant attention due to its potential for integrated nonlinear optical and optoelectronic applications. Stacking faults in vdW materials are a typical kind of planar defect that introduces a degree of freedom to modulate the crystal symmetry and resultant SHG response. However, the physical origin and tunability of stacking-fault-governed SHG in vdW materials remain unclear. Here, taking the intrinsically centrosymmetric vdW RhI3 as an example, we theoretically reveal the origin of stacking-fault-governed SHG response, where the SHG response comes from the energetically favorable AC̅ stacking fault of which the electrical transitions along the high-symmetry paths Γ-M and Γ-K in the Brillion zone play the dominant role at 810 nm. Such a stacking-fault-governed SHG response is further confirmed via structural characterizations and SHG measurements. Furthermore, by applying hydrostatic pressure on RhI3, the correlation between structural evolution and SHG response is revealed with SHG enhancement up to 6.9 times, where the decreased electronic transition energies and higher momentum matrix elements due to the stronger interlayer interactions upon compression magnify the SHG susceptibility. This study develops a promising foundation for nonlinear nano-optics applications through the strategic design of stacking faults.

11.
Sci Rep ; 13(1): 2032, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739468

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease that can lead to severe joint damage and disability. And early diagnosis and treatment of RA can avert or substantially slow the progression of joint damage in up to 90% of patients, thereby preventing irreversible disability. Previous research indicated that 50% of the risk for the development of RA is attributable to genetic factors, but the pathogenesis is not well understood. Thus, it is urgent to identify biomarkers to arrest RA before joints are irreversibly damaged. Here, we first use the Robust Rank Aggregation method (RRA) to identify the differentially expressed genes (DEGs) between RA and normal samples by integrating four public RA patients' mRNA expression data. Subsequently, these DEGs were used as the input for the weighted gene co-expression network analysis (WGCNA) approach to identify RA-related modules. The function enrichment analysis suggested that the RA-related modules were significantly enriched in immune-related actions. Then the hub genes were defined as the candidate genes. Our analysis showed that the expression levels of candidate genes were significantly associated with the RA immune microenvironment. And the results indicated that the expression of the candidate genes can use as predictors for RA. We hope that our method can provide a more convenient approach for the early diagnosis of RA.


Assuntos
Artrite Reumatoide , Genes Essenciais , Humanos , Artrite Reumatoide/genética , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes
12.
Chem Sci ; 14(6): 1479-1484, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794196

RESUMO

A novel piezo-activated luminescent material with wide range modulation of the luminescence wavelength and a giant intensity enhancement upon compression was prepared using a strategy of molecular doping. The doping of THT molecules into TCNB-perylene cocrystals results in the formation of a weak but pressure-enhanced emission center in the material at ambient pressure. Upon compression, the emissive band from the undoped component TCNB-perylene undergoes a normal red shift and emission quenching, while the weak emission center shows an anomalous blue shift from 615 nm to 574 nm and a giant luminescence enhancement up to 16 GPa. Further theoretical calculations show that doping by THT could modify intermolecular interactions, promote molecular deformation, and importantly, inject electrons into the host TCNB-perylene upon compression, which contributes to the novel piezochromic luminescence behavior. Based on this finding, we further propose a universal approach to design and regulate the piezo-activated luminescence of materials by using other similar dopants.

13.
Chem Sci ; 14(42): 11629-11637, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920334

RESUMO

Unlike the known aggregation-caused quenching (ACQ) that the enhancement of π-π interactions in rigid organic molecules usually decreases the luminescent emission, here we show that an intermolecular "head-to-head" π-π interaction in the phenanthrene crystal, forming the so-called "transannular effect", could result in a higher degree of electron delocalization and thus photoluminescent emission enhancement. Such a transannular effect is molecular configuration and stacking dependent, which is absent in the isomers of phenanthrene but can be realized again in the designed phenanthrene-based cocrystals. The transannular effect becomes more significant upon compression and causes anomalous piezoluminescent enhancement in the crystals. Our findings thus provide new insights into the effects of π-π interactions on luminescence emission and also offer new pathways for designing efficient aggregation-induced emission (AIE) materials to advance their applications.

14.
Nat Commun ; 14(1): 7860, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030640

RESUMO

As an advanced amorphous material, sp3 amorphous carbon exhibits exceptional mechanical, thermal and optical properties, but it cannot be synthesized by using traditional processes such as fast cooling liquid carbon and an efficient strategy to tune its structure and properties is thus lacking. Here we show that the structures and physical properties of sp3 amorphous carbon can be modified by changing the concentration of carbon pentagons and hexagons in the fullerene precursor from the topological transition point of view. A highly transparent, nearly pure sp3-hybridized bulk amorphous carbon, which inherits more hexagonal-diamond structural feature, was synthesized from C70 at high pressure and high temperature. This amorphous carbon shows more hexagonal-diamond-like clusters, stronger short/medium-range structural order, and significantly enhanced thermal conductivity (36.3 ± 2.2 W m-1 K-1) and higher hardness (109.8 ± 5.6 GPa) compared to that synthesized from C60. Our work thus provides a valid strategy to modify the microstructure of amorphous solids for desirable properties.

15.
J Am Chem Soc ; 134(11): 5331-8, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22329538

RESUMO

Three isomers with the composition Sm@C(84) were isolated from carbon soot obtained by electric arc vaporization of carbon rods doped with Sm(2)O(3). These isomers were labeled Sm@C(84)(I), Sm@C(84)(II), and Sm@C(84)(III) in order of their elution times during chromatography on a Buckyprep column with toluene as the eluent. Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(II)(octaethylporphyrin) reveals the identities of two of the isomers: Sm@C(84)(I) is Sm@C(2)(13)-C(84), and Sm@C(84)(III) is Sm@ D(3d)(19)-C(84). Sm@C(84)(II) can be identified as Sm@C(2)(11)-C(84) on the basis of the similarity of its UV/vis/NIR spectrum with that of Yb@C(2)(11)-C(84), whose carbon cage has been characterized by (13)C NMR spectroscopy. Comparison of the three Sm@C(84) isomers identified in this project with two prior reports of the preparation and isolation of isomers of Sm@C(84) indicate that five different Sm@C(84) isomers have been found and that the source of samarium used for the generation of fullerene soot is important in determining which of these isomers form.


Assuntos
Fulerenos/isolamento & purificação , Samário/isolamento & purificação , Cristalografia por Raios X , Fulerenos/química , Modelos Moleculares , Samário/química , Estereoisomerismo
16.
Proc Natl Acad Sci U S A ; 106(52): 22135-8, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018752

RESUMO

Peapods present a model system for studying the properties of dimensionally constrained crystal structures, whose dynamical properties are very important. We have recently studied the rotational dynamics of C(60) molecules confined inside single walled carbon nanotube (SWNT) by analyzing the intermediate frequency mode lattice vibrations using near-infrared Raman spectroscopy. The rotation of C(60) was tuned to a known state by applying high pressure, at which condition C(60) first forms dimers at low pressure and then forms a single-chain, nonrotating, polymer structure at high pressure. In the latter state the molecules form chains with a 2-fold symmetry. We propose that the C(60) molecules in SWNT exhibit an unusual type of ratcheted rotation due to the interaction between C(60) and SWNT in the "hexagon orientation," and the characteristic vibrations of ratcheted rotation becomes more obvious with decreasing temperature.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121723, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964353

RESUMO

Studying the stimuli-responsive properties of luminescent materials is important for their applications, while the luminescent materials studied up to now usually exhibit emission quenching and red shift in photoluminescence (PL) energy upon compression. Designing luminescent material with abnormal pressure responses remains challenging. Here, we report the discovery of abnormal luminescent properties of FCO-CzS upon compression. A theoretical study on the excited state decay process has been carried out for FCO-CzS at high pressure by hybrid quantum mechanics/molecular mechanics (QM/MM). A significant emission enhancement and blue shift are observed as pressure increases up to 20 GPa. This is opposite to the pressure response behaviours reported for other luminescent materials. It is further revealed that both the unique molecular configuration and the electronic structure change contribute to the anomalous pressure-responsive emission of FCO-CzS, which reduces the non-radiative rate and increases the radiative rate, respectively. Our study provides a strategy for the design of luminescent materials with desired pressure responses.


Assuntos
Luminescência , Simulação de Dinâmica Molecular , Eletrônica , Conformação Molecular
18.
ACS Appl Mater Interfaces ; 13(22): 26551-26560, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34034484

RESUMO

As a newly emerging approach for surface-enhanced Raman spectroscopy (SERS), pressure-induced SERS (PI-SERS) has been attracting increasing interest for its applications in Raman signal enhancement at extreme conditions. However, how to efficiently realize the PI-SERS enhancement and elucidate the corresponding mechanism remain open questions. Herein, we demonstrate the PI-SERS enhancement up to 8.04 GPa using monolayer molybdenum disulfide (ML-MoS2) as a SERS substrate and three organic molecules with similar energy levels but different symmetries as probes. The combined theory and experiment results show that a pressure-induced increase in the Fermi level of the ML-MoS2 substrate and a decrease in the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap of probe molecules lead to a transition from the multiple resonance-related SERS enhancement to charge transfer (CT)-dominated PI-SERS selective enhancement, depending on the incident laser energy and the pressure applied. Such PI-SERS selective enhancement has been discussed in the framework of CT-induced strengthening of electron-phonon coupling, as well as a possible match of the structural symmetries between probe molecules and the substrate. This study provides deep insights into our understanding of PI-SERS enhancement, and the revealed mechanism can be extended to other molecules for SERS at extreme conditions.

19.
Nat Commun ; 12(1): 4084, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215739

RESUMO

Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier. By combining experiment with theory, it is further revealed that the inserted non-emissive THF forms blue-shifting hydrogen bonds with neighboring TCNB molecules and promote a conformation change of perylene molecules upon compression, causing the blue-shifted and enhanced emission. This strategy remains valid when inserting other molecules as non-emissive component into perylene-TCNB cocrystals for abnormal piezochromic luminescent behaviors.

20.
Adv Sci (Weinh) ; 7(10): 1902320, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440468

RESUMO

Nitrogen has unique bonding ability to form single, double, and triple bonds, similar to that of carbon. However, a molecular crystal formed by an aromatic polynitrogen similar to a carbon system has not been found yet. Herein, a new form of stable all-nitrogen molecular crystals consisting of only bispentazole N10 molecules with exceedingly high energy density is predicted. The crystal structures and the conformation of N10 molecules are strongly correlated, both depending on the applied external pressure. These molecular crystals can be recovered upon the release of the pressure. The first-principles molecular dynamics simulations reveal that these all-nitrogen materials decompose at temperatures much higher than room temperature. The decompositions always start from breaking off N2 molecules from the nitrogen ring and can release a large amount of energy. These new polynitrogens are aromatic and are more stable than all the other polynitrogen crystals reported previously, providing a new green strategy to get all-nitrogen, nonpolluting high energy density materials without introducing any metal or other guest stabilizer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA