Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838646

RESUMO

The transition metal ions doping in II-VI semiconductor can produce exciton magnetic polaron (EMP) and localized EMP, in which contain longitudinal optical (LO) phonon coupling will be discussed in this paper. Transition metal ion doping in II-VI semiconductor for dilute magnetic semiconductor (DMS) show emission by magnetic polarons together with hot carrier effect that need to be understand by its optical properties. The high excitation power responsible for hot carrier effect that suppressed the charge trapping effect for low exciton binding energy (8.12 meV) semiconductor even at room temperature. The large polaron radius exhibits strong interaction between carrier and magnetic polaron results anharmonicty effect in which side-band energy overtone to LO phonon. The photon-like polariton show the polarized spin interaction with LO that show strong spin-phonon polariton at room temperature. The temperature-dependent photoluminescence spectra of Ni-doped ZnTe show free exciton (FX), FX interact with 2LO phonon-spin interaction corresponding to 3T1(3F) → 1T1(1G) and EMP peaks with ferromagnetically coupled Ni ions at 3T1(3F) → 1E(1G). In addition, other d-d transition of single Ni ions (600-900 nm) appears at low energy side. Room temperature energy shift of 14-38 meV due to localized states with density of states tails extending far into bandgap related spin induced localization at valance band. These results show spin-spin magnetic coupling and spin-phonon interaction at room temperature that open a new horizon of optically controlled dilute magnetic semiconductor applications more realistic.

2.
Inorg Chem ; 61(31): 12406-12414, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877167

RESUMO

Lead-based metal halide perovskites have received widespread attention for their promising application prospects in the field of lighting and display due to their excellent optical properties. However, the toxicity of lead may hinder their further commercial application. Herein, a zero-dimensional (0D) metal halide (NH4)2InCl5·H2O with an orthorhombic structure and the Pnma space group was produced. With doping with Sb3+, these products exhibit one highly efficient and wide yellow emission band (∼450-850 nm) in their photoluminescence (PL) spectra, which covers almost the entire visible spectral range at room temperature; however, they give two emission bands with long decay lifetimes (microseconds) at low temperature. Temperature-dependent steady-state PL, transient PL spectroscopy, temperature-dependent Raman spectra characterization, and theoretical band structure calculations confirm that the dual-band emission at low temperature originates from the dual vibronic levels of the self-trapped exciton (STE) in the hole-vibration state, whose vibration energy is related to the H2O-NH4+ connection in the valence band. This result proves that the vibronic state in STE formation involves both electrons and holes in the excited states, the opposite of this happens in the electron-vibration band in most perovskite halides. These results provide new insight into the luminescent mechanism of Sb3+ in halide perovskites, especially used for emission color modulation by the temperature-dependent electron- or hole-vibration processes.

3.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080479

RESUMO

In this work, we performed a systematic comparison of different duration of solvent vapor annealing (SVA) treatment upon state-of-the-art PM6:SY1 blend film, which is to say for the first time, the insufficient, appropriate, and over-treatment's effect on the active layer is investigated. The power conversion efficiency (PCE) of corresponding organic solar cell (OSC) devices is up to 17.57% for the optimized system, surpassing the two counterparts. The properly tuned phase separation and formed interpenetrating network plays an important role in achieving high efficiency, which is also well-discussed by the morphological characterizations and understanding of device physics. Specifically, these improvements result in enhanced charge generation, transport, and collection. This work is of importance due to correlating post-treatment delicacy, thin-film morphology, and device performance in a decent way.

4.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144539

RESUMO

Multicomponent organic solar cells (OSCs), such as the ternary and quaternary OSCs, not only inherit the simplicity of binary OSCs but further promote light harvesting and power conversion efficiency (PCE). Here, we propose a new type of multicomponent solar cells with non-fullerene acceptor isomers. Specifically, we fabricate OSCs with the polymer donor J71 and a mixture of isomers, ITCF, as the acceptors. In comparison, the ternary OSC devices with J71 and two structurally similar (not isomeric) NFAs (IT-DM and IT-4F) are made as control. The morphology experiments reveal that the isomers-containing blend film demonstrates increased crystallinity, more ideal domain size, and a more favorable packing orientation compared with the IT-DM/IT-4F ternary blend. The favorable orientation is correlated with the balanced charge transport, increased exciton dissociation and decreased bimolecular recombination in the ITCF-isomer-based blend film, which contributes to the high fill factor (FF), and thus the high PCE. Additionally, to evaluate the generality of this method, we examine other acceptor isomers including IT-M, IXIC-2Cl and SY1, which show same trend as the ITCF isomers. These results demonstrate that using isomeric blends as the acceptor can be a promising approach to promote the performance of multicomponent non-fullerene OSCs.

5.
J Colloid Interface Sci ; 662: 426-437, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359506

RESUMO

The pulp and paper sectors are thriving yet pose significant environmental threats to water bodies, mainly due to the substantial release of pollutants. Lignin-derived compounds are among the most problematic of these contaminants. To address this issue, we present our initial results on utilizing organic semiconductor photocatalysis under visible light for treating lignin-derived compounds. Our investigation has been centered around creating a green and cost-effective organic semiconductor photocatalyst. This catalyst is designed using a structure of bagasse cellulose spheres to support PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))]: MeIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-cyclopentane-1,3-dione[c]-1-methyl-thiophe))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene)). This photocatalyst demonstrates remarkable efficiency, achieving over 91 % degradation of lignin-derived compounds. The superior photocatalytic performance is attributed to three main factors: (1) The ability of PM6 to broaden MeIC's absorption range from 300 to 800 nm, allowing for effective utilization of visible light; (2) the synergistic interaction between PM6 and MeIC, which ensures compatible energy levels and a vast, evenly spread surface area, promoting charge mobility and extensive donor/acceptor interfaces. This synergy significantly enhances the generation and transport of carriers, resulting in a high production of free radicals that accelerate the decomposition of organic materials; (3) The deployment of PM6:MeIC on biomass-based carriers increases the interaction surface with the organic substances. Notably, PM6: MeIC showcases outstanding durability, with its degradation efficiency remaining between 84 % and 91 % across 100 cycles. This study presents a promising approach for designing advanced photocatalysts aimed at degrading common pollutants in papermaking wastewater.

6.
J Phys Chem Lett ; 14(51): 11597-11602, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100080

RESUMO

Metal halide crystals are widely used in optoelectronic fields due to their excellent optical properties. The hunt for a lead-free halide semiconductor with superior optical performance is a particularly fascinating topic in order to avoid the toxicity of lead. Here, we incorporate Ni2+ into a series of halide nanocrystals (NCs) through solution-phase synthesis. By modifying the A-site and varying the halide compositions, we successfully achieved significant tunability of the blue emission of the Ni2+-doped AX (A = K+, Rb+, NH2CH = NH2+ (FA), CH3NH3+ (MA); X = Br, I) NCs, ranging from 375 to 490 nm, due to the antiferromagnetic polaron (AMP), which is in contrast with the excitonic magnetic polarons (EMP) from those with ferromagnetic (FM) coupling between transition metal ions in similar compounds. This work shows that Ni2+-doped halide crystals could become a typical example providing AMP excitation as the optional emission centers for use in light emitting devices.

7.
ACS Appl Mater Interfaces ; 14(26): 29956-29963, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729794

RESUMO

Herein, we report a systematic solvent selection for eco-friendly processed binary all-polymer solar cells (APSCs) with decent power conversion efficiencies (PCEs). Three typical solvents, toluene, o-xylene, and 1,2,4-trimethylbezene, are chosen and compared. The device enabled by o-xylene exhibits the most outstanding PCE of 16.22%, thanks to its favorable morphology, which is to say a well-formed face-on orientation packing motif and a suitable crystallinity and size of phase segregation. Consequently, the solar cell affords sufficient charge generation, as well as efficient and balanced charge transport, which are all positive to pursuing high efficiency. This work offers an understanding of using complete solvent selection as the strategy to realize high-performance devices by sophisticatedly controlling the morphology.

8.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808057

RESUMO

Blue-luminescence materials are needed in urgency. Recently, zero-dimensional (0D) organic metal halides have attractive much attention due to unique structure and excellent optical properties. However, realizing blue emission with near-UV-visible light excitation in 0D organic metal halides is still a great challenge due to their generally large Stokes shifts. Here, we reported a new (0D) organic metal halides (TPA)2PbBr4 single crystal (TPA+ = tetrapropylammonium cation), in which the isolated [PbBr4]2- tetrahedral clusters are surrounded by organic ligand of TPA+, forming a 0D framework. Upon photoexcitation, (TPA)2PbBr4 exhibits a blue emission peaking at 437 nm with a full width at half-maximum (FWHM) of 50 nm and a relatively small Stokes shift of 53 nm. Combined with density functional theory (DFT) calculations and spectral analysis, it is found that the observed blue emission in (TPA)2PbBr4 comes from the combination of free excitons (FEs) and self-trapped exciton (STE), and a small Stokes shift of this compound are caused by the small structure distortion of [PbBr4]2- cluster in the excited state confined by TPA molecules, in which the multi-phonon effect take action. Our results not only clarify the important role of excited state structure distortion in regulating the STEs formation and emission, but also focus on 0D metal halides with bright blue emission under the near-UV-visible light excitation.

9.
ACS Appl Mater Interfaces ; 14(40): 45611-45620, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179359

RESUMO

Zero-dimensional (0D) organic metal halides have captured extensive attention for their various structures and distinguished optical characteristics. However, achieving efficient emission through rational crystal structure design remains a great challenge, and how the crystal structure affects the photophysical properties of 0D metal halides is currently unclear. Herein, a rational crystal structure regulation strategy in 0D Sb(III)-based metal halides is proposed to realize near-unity photoluminescence quantum yield (PLQY). Specifically, two 0D organic Sb(III)-based compounds with different coordination configurations, namely, (C25H22P)2SbCl5 and (C25H22P)SbCl4 (C25H22P+ = benzyltriphenylphosphonium), were successfully obtained by precisely controlling the ratio of the initial raw materials. (C25H22P)2SbCl5 adopts an octahedral coordination geometry and shows highly efficient broadband yellow emission with a PLQY of 98.6%, while (C25H22P)SbCl4 exhibits a seesaw-shaped [SbCl4]- cluster and does not emit light under photoexcitation. Theoretical calculations reveal that, by rationally controlling the coordination structure, the indirect bandgap of (C25H22P)SbCl4 can be converted to the direct bandgap of (C25H22P)2SbCl5, thus ultimately boosting the emission intensity. Together with efficient emission and outstanding stability of (C25H22P)2SbCl5, a high-performance white-light emitting diode (WLED) with a high luminous efficiency of 31.2 lm W-1 is demonstrated. Our findings provide a novel strategy to regulate the coordination structure of the crystals, so as to rationally optimize the luminescence properties of organic metal halides.

10.
ACS Omega ; 7(45): 41789-41795, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406480

RESUMO

PEDOT: PSS is the most popular hole-transporting material (HTM) for conventional structural organic solar cell (OSC) devices, whose performance is of great importance for realizing high power conversion efficiency (PCE). However, its performance in OSC devices has been continuously challenged by various replacing materials and different doping strategies, for better conductivity, work function, and surface property. Here, we report a simple dopant-free method to tune the phase separation of the PEDOT:PSS layer, which results in better charge transport and extraction in devices. Specifically, high PCEs for binary polymer-small-molecule (>18%) and polymer-polymer (>17%) systems are simultaneously achieved. This work engineeringly provides encouraging improvement for OSC device performance with easy modification and scientifically offers insights into tuning the property of the PEDOT:PSS layer.

11.
ACS Appl Mater Interfaces ; 13(11): 13443-13451, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33715359

RESUMO

Zero-dimensional lead-free organic-inorganic hybrid metal halides have drawn attention as a result of their local metal ion confinement structure and photoelectric properties. Herein, a lead-free compound of (Gua)3Cu2I5 (Gua = guanidine) with a different metal ion confinement has been discovered, which possesses a unique [Cu2I5]3- face-sharing tetrahedral dimer structure. First-principles calculation demonstrates the inherent nature of a direct band gap for (Gua)3Cu2I5, and its band gap of ∼2.98 eV was determined by experiments. Worthy of note is that (Gua)3Cu2I5 exhibits a highly efficient cool-white emission peaking at 481 nm, a full-width at half-maximum of 125 nm, a large Stokes shift, and a photoluminescence quantum efficiency of 96%, originating from self-trapped exciton emission. More importantly, (Gua)3Cu2I5 single crystals have a reversible thermoinduced luminescence characteristic due to a structural transition scaled by the electron-phonon coupling coefficients, which can be converted back and forth between cool-white and yellow color emission by heating or cooling treatment within a short time. In brief, as-synthesized (Gua)3Cu2I5 shows great potential for application both in single-component white solid-state lighting and sensitive temperature scaling.

12.
J Phys Chem Lett ; 11(12): 4703-4710, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32384827

RESUMO

Recently, low-dimensional organic-inorganic lead halide perovskites have attracted a great deal of attention due to their outstanding tunable broadband emission, while the toxicity of lead hinders their further application in the photoelectric field. Here, we report a novel lead-free Cu(I)-based organic-inorganic perovskite-related material of a (MA)4Cu2Br6 single crystal with zero-dimensional clusters, which is a unique Cu2Br64- corner-sharing tetrahedron dimer structure consisting of two connected tetrahedra. The single crystal displays a bright broadband green emission with a high photoluminescence with a quantum yield of ≤93%, a large Stokes shift, and a very long (microsecond) photoluminescence (PL) lifetime, resulting from self-trapped exciton emission. The direct band gap characteristic of (MA)4Cu2Br6 was proven by density functional theory calculation, and its band gap was determined by experiments to be ∼3.87 eV. In the temperature range of 98-258 K, the PL intensity increases gradually with an increase in temperature due to the deep trapping out of strong electro-phonon coupling, while the PL decreases when the temperature increases over 258 K due to phonon scattering. It is worth mentioning that this new material has high chemical and light stability, in contrast to the lead perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA