Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Virol ; 97(5): e0058023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166302

RESUMO

Hepatitis B virus (HBV) infection affects hepatic metabolism. Serum metabolomics studies have suggested that HBV possibly hijacks the glycerol-3-phosphate (G3P) shuttle. In this study, the two glycerol-3-phosphate dehydrogenases (GPD1 and GPD2) in the G3P shuttle were analyzed for determining their role in HBV replication and the findings revealed that GPD2 and not GPD1 inhibited HBV replication. The knockdown of GPD2 expression upregulated HBV replication, while GPD2 overexpression reduced HBV replication. Moreover, the overexpression of GPD2 significantly reduced HBV replication in hydrodynamic injection-based mouse models. Mechanistically, this inhibitory effect is related to the GPD2-mediated degradation of HBx protein by recruiting the E3 ubiquitin ligase TRIM28 and not to the alterations in G3P metabolism. In conclusion, this study revealed GPD2, a key enzyme in the G3P shuttle, as a host restriction factor in HBV replication. IMPORTANCE The glycerol-3-phosphate (G3P) shuttle is important for the delivery of cytosolic reducing equivalents into mitochondria for oxidative phosphorylation. The study analyzed two key components of the G3P shuttle and identified GPD2 as a restriction factor in HBV replication. The findings revealed a novel mechanism of GPD2-mediated inhibition of HBV replication via the recruitment of TRIM28 for degrading HBx, and the HBx-GPD2 interaction could be another potential therapeutic target for anti-HBV drug development.


Assuntos
Glicerolfosfato Desidrogenase , Hepatite B , Proteína 28 com Motivo Tripartido , Proteínas Virais Reguladoras e Acessórias , Animais , Camundongos , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Mitocôndrias/enzimologia , Fosfatos/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral
2.
J Virol ; 96(13): e0058522, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35862693

RESUMO

The biogenesis of covalently closed circular DNA (cccDNA) from relaxed circular DNA (rcDNA) is essential for chronic hepatitis B virus (HBV) infection. Different host DNA repair proteins are involved in the conversion of rcDNA to cccDNA. Here, we reported that the DNA repair factor poly(ADP-ribose) polymerase 1 (PARP1) is engaged in HBV cccDNA formation. PARP1 depletion remarkably impaired HBV replication and cccDNA synthesis. Inhibition of PARP1 poly (ADP-ribosylation) activity by olaparib suppressed cccDNA synthesis both in vitro and in vivo. Specifically, the early stage of cccDNA reservoir establishment was more sensitive to olaparib, suggesting that PARP1 participated in de novo cccDNA formation. Furthermore, PARP1 was activated by recognizing the rcDNA-like lesions directly and combined with other DNA repair proteins. The results presented proposed that the DNA damage-sensing protein PARP1 and poly(ADP-ribosylation) modification play a key role in cccDNA formation, which might be the target for developing the anti-HBV drug. IMPORTANCE The biogenesis and eradication of HBV cccDNA have been a research priority in recent years. In this study, we identified the DNA repair factor PARP1 as a host factor required for the HBV de novo cccDNA formation. HBV infection caused PARylation through PARP1 in Huh7-NTCP cells, primary human hepatocytes, and human-liver chimeric mice. We found that PARP1 could directly bind to the rcDNA lesions and was activated, PARylating other DNA repair proteins. We address the importance of PARP1-mediated PARylation in HBV cccDNA formation, which is a potential therapeutic target for chronic hepatitis B.


Assuntos
DNA Circular , Hepatite B , Poli(ADP-Ribose) Polimerase-1 , Animais , Reparo do DNA , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/genética , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Provírus/genética
3.
J Virol ; 96(5): e0182721, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35020472

RESUMO

Human cytomegalovirus (HCMV) has a large (∼235 kb) genome with more than 200 predicted open reading frames that exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here, we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was upregulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and colocalized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. IMPORTANCE During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for antiviral treatment.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Interações entre Hospedeiro e Microrganismos , Repetições WD40 , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/virologia , Humanos , Morfogênese , Vírion/metabolismo , Montagem de Vírus/genética , Replicação Viral/genética , Repetições WD40/genética , Rede trans-Golgi/metabolismo
4.
J Med Virol ; 95(7): e28969, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37485644

RESUMO

Despite the extensive use of effective vaccines and antiviral drugs, chronic hepatitis B virus (HBV) infection continues to pose a serious threat to global public health. Therapies with novel mechanisms of action against HBV are being explored for achieving a functional cure. In this study, five murine models of HBV replication were used to investigate the inhibitory effect of RNA binding motif protein 24 (RBM24) on HBV replication. The findings revealed that RBM24 serves as a host restriction factor and suppresses HBV replication in vivo. The transient overexpression of RBM24 in hydrodynamics-based mouse models of HBV replication driven by the CMV or HBV promoters suppressed HBV replication. Additionally, the ectopic expression of RBM24 decreased viral accumulation and the levels of HBV covalently closed circular DNA (cccDNA) in an rcccDNA mouse model. The liver-directed transduction of adeno-associated viruses (AAV)-RBM24 mediated the stable hepatic expression of RBM24 in pAAV-HBV1.2 and HBV/tg mouse models, and markedly reduced the levels of HBV cccDNA and other viral indicators. Altogether, these findings revealed that RBM24 inhibits the replication of HBV in vivo, and RBM24 may be a potential therapeutic target for combating HBV infections.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Replicação Viral , DNA Circular , Motivos de Ligação ao RNA , DNA Viral/genética , DNA Viral/metabolismo
5.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504601

RESUMO

We previously reported that human cytomegalovirus (HCMV) utilizes the cellular protein WD repeat-containing protein 5 (WDR5) to facilitate capsid nuclear egress. Here, we further show that HCMV infection results in WDR5 localization in a juxtanuclear region, and that its localization to this cellular site is associated with viral replication and late viral gene expression. Furthermore, WDR5 accumulated in the virion assembly compartment (vAC) and co-localized with vAC markers of gamma-tubulin (γ-tubulin), early endosomes, and viral vAC marker proteins pp65, pp28, and glycoprotein B (gB). WDR5 co-immunoprecipitated with multiple virion proteins, including MCP, pp150, pp65, pIRS1, and pTRS1, which may explain WDR5 accumulation in the vAC during infection. WDR5 fractionated with virions either in the presence or absence of Triton X-100 and was present in purified viral particles, suggesting that WDR5 was incorporated into HCMV virions. Thus, WDR5 localized to the vAC and was incorporated into virions, raising the possibility that in addition to capsid nuclear egress, WDR5 could also participate in cytoplasmic HCMV virion morphogenesis.Importance Human cytomegalovirus (HCMV) has a large (∼235-kb) genome that contains over 170 ORFs and exploits numerous cellular factors to facilitate its replication. In the late phase of HCMV infection cytoplasmic membranes are reorganized to establish the virion assembly compartment (vAC), which has been shown to necessary for efficient assembly of progeny virions. We previously reported that WDR5 facilitates HCMV nuclear egress. Here, we show that WDR5 is localized to the vAC and incorporated into virions, perhaps contributing to efficient virion maturation. Thus, findings in this study identified a potential role for WDR5 in HCMV assembly in the cytoplasmic phase of virion morphogenesis.

6.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35879101

RESUMO

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Assuntos
Infecções por Citomegalovirus , Proteínas Imediatamente Precoces , Adenosina Trifosfatases/metabolismo , Citomegalovirus/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Replicação Viral
7.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626666

RESUMO

Encapsidation of pregenomic RNA (pgRNA) is a crucial step in hepatitis B virus (HBV) replication. Binding by viral polymerase (Pol) to the epsilon stem-loop (ε) on the 5'-terminal region (TR) of pgRNA is required for pgRNA packaging. However, the detailed mechanism is not well understood. RNA-binding motif protein 24 (RBM24) inhibits core translation by binding to the 5'-TR of pgRNA. Here, we demonstrate that RBM24 is also involved in pgRNA packaging. RBM24 directly binds to the lower bulge of ε via RNA recognition submotifs (RNPs). RBM24 also interacts with Pol in an RNA-independent manner. The alanine-rich domain (ARD) of RBM24 and the reverse transcriptase (RT) domain of Pol are essential for binding between RBM24 and Pol. In addition, overexpression of RBM24 increases Pol-ε interaction, whereas RBM24 knockdown decreases the interaction. RBM24 was able to rescue binding between ε and mutant Pol lacking ε-binding activity, further showing that RBM24 mediates the interaction between Pol and ε by forming a Pol-RBM24-ε complex. Finally, RBM24 significantly promotes the packaging efficiency of pgRNA. In conclusion, RBM24 mediates Pol-ε interaction and formation of a Pol-RBM24-ε complex, which inhibits translation of pgRNA and results in pgRNA packing into capsids/virions for reverse transcription and DNA synthesis.IMPORTANCE Hepatitis B virus (HBV) is a ubiquitous human pathogen, and HBV infection is a major global health burden. Chronic HBV infection is associated with the development of liver diseases, including fulminant hepatitis, hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. A currently approved vaccine can prevent HBV infection, and medications are able to reduce viral loads and prevent liver disease progression. However, current treatments rarely achieve a cure for chronic infection. Thus, it is important to gain insight into the mechanisms of HBV replication. In this study, we found that the host factor RBM24 is involved in pregenomic RNA (pgRNA) packaging and regulates HBV replication. These findings highlight a potential target for antiviral therapeutics of HBV infection.


Assuntos
Vírus da Hepatite B/genética , Hepatite B/genética , Hepatite B/virologia , RNA Viral/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Montagem de Vírus/genética , Capsídeo/virologia , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Ligação Proteica/genética , Motivos de Ligação ao RNA/genética , DNA Polimerase Dirigida por RNA/genética , Transcrição Reversa/genética , Replicação Viral/genética
8.
J Virol ; 92(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437978

RESUMO

WD repeat-containing protein 5 (WDR5) is essential for assembling the VISA-associated complex to induce a type I interferon antiviral response to Sendai virus infection. However, the roles of WDR5 in DNA virus infections are not well described. Here, we report that human cytomegalovirus exploits WDR5 to facilitate capsid nuclear egress. Overexpression of WDR5 in fibroblasts slightly enhanced the infectious virus yield. However, WDR5 knockdown dramatically reduced infectious virus titers with only a small decrease in viral genome replication or gene expression. Further investigation of late steps of viral replication found that WDR5 knockdown significantly impaired formation of the viral nuclear egress complex and induced substantially fewer infoldings of the inner nuclear membrane. In addition, fewer capsids were associated with these infoldings, and there were fewer capsids in the cytoplasm. Restoration of WDR5 partially reversed these effects. These results suggest that WDR5 knockdown impairs the nuclear egress of capsids, which in turn decreases virus titers. These findings reveal an important role for a host factor whose function(s) is usurped by a viral pathogen to promote efficient replication. Thus, WDR5 represents an interesting regulatory mechanism and a potential antiviral target.IMPORTANCE Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 170 open reading frames and exploits numerous cellular factors to facilitate its replication. HCMV infection increases protein levels of WD repeat-containing protein 5 (WDR5) during infection, overexpression of WDR5 enhances viral replication, and knockdown of WDR5 dramatically attenuates viral replication. Our results indicate that WDR5 promotes the nuclear egress of viral capsids, the depletion of WDR5 resulting in a significant decrease in production of infectious virions. This is the first report that WDR5 favors HCMV, a DNA virus, replication and highlights a novel target for antiviral therapy.


Assuntos
Capsídeo/metabolismo , Citomegalovirus/fisiologia , Replicação do DNA/genética , DNA Viral/biossíntese , Histona-Lisina N-Metiltransferase/metabolismo , Replicação Viral/fisiologia , Linhagem Celular , Sobrevivência Celular , DNA Viral/genética , Genoma Viral/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/citologia , Pulmão/virologia , Transporte Proteico/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Regulação para Cima , Carga Viral/genética , Internalização do Vírus
9.
J Gen Virol ; 98(6): 1410-1421, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28678687

RESUMO

Ceruloplasmin (CP) is mainly synthesized by hepatocytes and plays an essential role in iron metabolism. Previous reports have shown that CP levels correlate negatively with disease progression in patients with chronic hepatitis B. However, the function of CP in the hepatitis B virus (HBV) life cycle and the mechanism underlying the above correlation remain unclear. Here, we report that CP can selectively inhibit the production of extracellular HBV virions without altering intracellular viral replication. HBV expression can also downregulate the expression of CP. Knockdown of CP using small interfering RNA significantly increased the level of extracellular HBV virions in both Huh7 and HepG2.2.15 cells, while overexpression of CP decreased this level. Mechanistically, CP could specifically interact with the HBV middle surface protein (MHB). Using an HBV replication-competent clone unable to express MHBs, we demonstrated that the overexpression of CP did not affect the production of extracellular HBV virions in the absence of MHBs. Furthermore, introduction of an MHB expression construct could rescue the impairment in virion production caused by CP. Taken together, our results suggest that CP may be an important host factor that targets MHBs during the envelopment and/or release of virions.


Assuntos
Ceruloplasmina/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Adulto , Linhagem Celular , Ceruloplasmina/análise , Feminino , Hepatite B Crônica/virologia , Hepatócitos/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Mapeamento de Interação de Proteínas
10.
Int J Biol Macromol ; 245: 125539, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355064

RESUMO

Chronic hepatitis B virus (HBV) infection is a worldwide public health problem that causes significant liver-related morbidity and mortality. In our previous study, Strongylocentrotus nudus eggs polysaccharide (SEP), extracted from sea urchins, had immunomodulatory and antitumor effects. Whether SEP has anti-HBV activity is still obscure. This study demonstrated that SEP decreased the secretion of hepatitis B surface antigen (HBsAg) and e antigen (HBeAg), as well as the replication and transcription of HBV both in vitro and in vivo. Immunofluorescence and immunohistochemistry results showed that the level of HBV core antigen (HBcAg) was clearly reduced by SEP treatment. Mechanistically, RT-qPCR, western blot, and confocal microscopy analysis showed that SEP significantly increased the expression of toll-like receptor 4 (TLR4) and co-localization with TLR4. The downstream molecules of TLR4, including NF-κb and IRF3, were activated and the expression of IFN-ß, TNF-α, IL-6, OAS, and MxA were also increased, which could suppress HBV replication. Moreover, SEP inhibited other genotypes of HBV and hepatitis C virus (HCV) replication in vitro. In summary, SEP could be investigated as a potential anti-HBV drug capable of modulating the innate immune.


Assuntos
Hepatite B Crônica , Strongylocentrotus , Animais , Humanos , Vírus da Hepatite B , Receptor 4 Toll-Like/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Antígenos E da Hepatite B/metabolismo , Strongylocentrotus/metabolismo , Replicação Viral
11.
Antiviral Res ; 209: 105478, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464077

RESUMO

SARS-CoV-2 is a betacoronavirus with single-stranded positive-sense RNA, which is a serious global threat to human health. Understanding the molecular mechanism of viral replication is crucial for the development of antiviral drugs. The synthesis of viral polyproteins is a crucial step in viral progression. The synthesis of viral polyproteins in coronaviruses is regulated by the 5'-untranslated region (UTR); however, the detailed regulatory mechanism needs further investigation. The present study demonstrated that the RNA binding protein, RBM24, interacts with the RNA genome of SARS-CoV-2 via its RNA recognition submotifs (RNPs). The findings revealed that RBM24 recognizes and binds to the GUGUG element at stem-loop 4 (SL4) in the 5'-UTR of SARS-CoV-2. The interaction between RBM24 and 5'-UTR prevents 80S ribosome assembly, which in turn inhibits polyproteins translation and the replication of SARS-CoV-2. Notably, other RNA viruses, including SARS-CoV, MERS-CoV, Ebolavirus, rhinovirus, West Nile virus, Zika virus, Japanese encephalitis virus, yellow fever virus, hepatitis C virus, and human immunodeficiency virus-1 also contain one or several G(U/C/A)GUG sequences in the 5'-UTR, which is also targeted by RBM24. In conclusion, the present study demonstrated that RBM24 functions by interacting with the 5'-UTR of SARS-CoV-2 RNA, and elucidated that RBM24 could be a host restriction factor for SARS-CoV-2 and other RNA viruses.


Assuntos
COVID-19 , Vírus de RNA , Infecção por Zika virus , Zika virus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , Regiões 5' não Traduzidas , Replicação Viral/genética , Zika virus/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Virol Sin ; 37(3): 408-417, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35523417

RESUMO

Hepatitis B virus (HBV)/Hepatitis C virus (HCV) coinfection is frequently observed because of the common infection routine. Despite the reciprocal inhibition exerted by HBV and HCV genomes, the coinfection of HBV and HCV is associated with more severe forms of liver diseases. However, the complexity of viral interference and underlying pathological mechanism is still unclarified. With the demonstration of absence of direct viral interplay, some in vitro studies suggest the indirect effects of viral-host interaction on viral dominance outcome. Here, we comprehensively investigated the viral replication and host immune responses which might mediate the interference between viruses in HBV/HCV coinfected Huh7-NTCP cells and immunocompetent HCV human receptors transgenic ICR mice. We found that presence of HCV significantly inhibited HBV replication in vitro and in vivo irrespective of the coinfection order, while HBV did not affect HCV replication. Pathological alteration was coincidently reproduced in coinfected mice. In addition to the participation of innate immune response, an involvement of HCV in up-regulating HBV-specific immune responses was described to facilitate HBV clearance. Our systems partially recapitulate HBV/HCV coinfection and unveil the uncharacterized adaptive anti-viral immune responses during coinfection, which renews the knowledge on the nature of indirect viral interaction during HBV/HCV coinfection.


Assuntos
Coinfecção , Hepatite B , Hepatite C , Animais , Hepacivirus/fisiologia , Vírus da Hepatite B/fisiologia , Hepatite C/complicações , Imunidade , Camundongos , Camundongos Endogâmicos ICR
13.
Front Med (Lausanne) ; 9: 1013785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419794

RESUMO

Background: Hirschsprung's disease (HSCR) is a neonatal enteric nervous system (ENS) disease characterized by congenital enteric ganglion cell loss. The only treatment is aganglionic bowel segment resection and innervated bowel segment reconstruction. Delayed diagnosis and treatment cause postoperative complications such as intractable constipation and enterocolitis. Existing preoperative HSCR diagnostic methods have shortcomings such as false positives, radiation and invasiveness. Methods: We used the robust linear model (RLM) for normalization and the M statistic for screening plasma human autoimmune antigen microarrays and quantitatively assessed single-stranded DNA (ssDNA) antibody levels with enzyme-linked immunosorbent assay (ELISA). Results: The autoimmune antigen microarray revealed that autoantibodies were higher in HSCR plasma than in disease control (DC) and healthy control (HC) plasma. ssDNA antibodies in HSCR plasma were significantly higher than those in DC and HC plasma. Quantitative ssDNA antibody level detection in plasma by ELISA showed that HSCR (n = 32) was 1.3- and 1.7-fold higher than DC (n = 14) and HC (n = 25), respectively. ssDNA antibodies distinguished HSCR from non-HSCR (HC and DC), achieving an area under the curve (AUC) of 0.917 (95% CI, 0.8550-0.9784), with a sensitivity of 96.99% and a specificity of 74.63%. Conclusion: ssDNA antibodies in plasma can serve as a diagnostic biomarker for HSCR in the clinic.

14.
Antiviral Res ; 198: 105249, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041910

RESUMO

The binding of HBV polymerase (Pol) and the epsilon stem loop (ε) on the 5' terminal region of pgRNA is required for pgRNA packaging and HBV replication. Previous research has demonstrated that RNA binding motif protein 24 (RBM24) is involved in pgRNA packaging by mediating the interaction between HBV polymerase (Pol) and the ε element. Here, we demonstrate that RBM38 interacts with ε, pol, RBM24 and HBV core which mediate pgRNA packaging. RBM38 directly binds to the lower bulge of ε via RNA recognition submotifs (RNPs) and interacts with HBV Pol in an RNA-independent manner. RBM38 interacts with RBM24 and forms heterogeneous oligomers, which mediate Pol-ε binding and the formation of the Pol-RBM38/RBM24-ε complex. More important, RBM38 also binds to the HBV core via the C-terminal region (ARD domain), which facilitates the combination of Pol-ε with the HBV core protein. In conclusion, RBM38 facilitates the Pol-ε interaction and mediates Pol-ε in combining with the HBV core, triggering pgRNA packaging for reverse transcription and DNA synthesis. This study provides new insights into pgRNA encapsidation.


Assuntos
Vírus da Hepatite B , RNA Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Nucleocapsídeo/metabolismo , RNA , RNA Viral/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
15.
Antiviral Res ; 172: 104619, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31600533

RESUMO

Hepatitis B virus (HBV) infection remains an important public health problem worldwide. Covalently closed circular DNA (cccDNA) exhibits as an individual minichromosome and is the molecular basis of HBV infection persistence and antiviral treatment failure. In the current study, we demonstrated that histone deacetylase 11 (HDAC11) inhibits HBV transcription and replication in HBV-transfected Huh7 cells. By using an HBV in vitro infection system, HDAC11 was found to affect the transcriptional activity of cccDNA but did not affect cccDNA production. Chromatin immunoprecipitation (ChIP) assays were utilized to analyze the epigenetic modifications of cccDNA. The results show that HDAC11 specifically reduced the acetylation level of cccDNA-bound histone H3 but did not affect that of histone H4. Furthermore, HDAC11 overexpression decreased the levels of cccDNA-bound acetylated H3K9 (H3K9ac) and H3K27 (H3K27ac). In conclusion, HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. These findings reveal the novel role of HDAC11 in HBV infection, further broadening our knowledge regarding the functions of HDAC11 and the roles of HDACs in the epigenetic regulation of HBV cccDNA.


Assuntos
Repressão Epigenética , Vírus da Hepatite B/genética , Histona Desacetilases/metabolismo , Replicação Viral/genética , Linhagem Celular , DNA Circular/metabolismo , DNA Viral/metabolismo , Epigênese Genética , Hepatite B/metabolismo , Hepatite B/virologia , Histonas/metabolismo , Humanos , Transcrição Gênica
16.
Emerg Microbes Infect ; 7(1): 186, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30459339

RESUMO

Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for hepatitis B virus (HBV) entry. However, little is known regarding whether NTCP is involved in regulating the postentry steps of the HBV life cycle. Here, we found that NTCP expression upregulated HBV transcription at the postentry step and that the NTCP-targeting entry inhibitor Myrcludex B (MyrB) effectively suppressed HBV transcription both in an HBV in vitro infection system and in mice hydrodynamically injected with an HBV expression plasmid. Mechanistically, NTCP upregulated HBV transcription via farnesoid X receptor α (FxRα)-mediated activation of the HBV EN2/core promoter at the postentry step in a manner that was dependent on the bile acid (BA)-transport function of NTCP, which was blocked by MyrB. Our findings uncover a novel role for NTCP in the HBV life cycle and provide a reference for the use of novel NTCP-targeting entry inhibitors to suppress HBV infection and replication.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/fisiologia , Lipopeptídeos/farmacologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Ativação Transcricional , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , DNA Viral/genética , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/genética , Regulação para Cima
17.
Emerg Microbes Infect ; 7(1): 86, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760415

RESUMO

The terminal redundancy (TR) sequence of the 3.5-kb hepatitis B virus (HBV) RNA contains sites that govern many crucial functions in the viral life cycle, including polyadenylation, translation, RNA packaging, and DNA synthesis. In the present study, RNA-binding motif protein 24 (RBM24) is shown to be involved in the modulation of HBV replication by targeting the TR of HBV RNA. In HBV-transfected hepatoma cell lines, both knockdown and overexpression of RBM24 led to decreased HBV replication and transcription. Ectopic expression of RBM24 inhibited HBV replication, which was partly restored by knockdown of RBM24, indicating that a proper level of RBM24 was required for HBV replication. The regulation of RBM24 of HBV replication and translation was achieved by the interaction between the RNA-binding domains of RBM24 and both the 5' and 3' TR of 3.5-kb RNA. RBM24 interacted with the 5' TR of HBV pregenomic RNA (pgRNA) to block 80S ribosome assembly on HBV pgRNA and thus inhibited core protein translation, whereas the interaction between RBM24 and the 3' TR enhanced the stability of HBV RNA. Finally, the regulatory function of RBM24 on HBV replication was further confirmed in a HBV infection model. In conclusion, the present study demonstrates the dual functions of RBM24 by interacting with different TRs of viral RNA and reveals that RBM24 is an important host gene for HBV replication.


Assuntos
Vírus da Hepatite B/genética , Hepatite B/metabolismo , Interações Hospedeiro-Patógeno , RNA Viral/química , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/genética , Motivos de Aminoácidos , Regulação Viral da Expressão Gênica , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B/química , Vírus da Hepatite B/metabolismo , Humanos , Ligação Proteica , Biossíntese de Proteínas , Transporte Proteico , RNA/química , RNA/genética , RNA/metabolismo , Estabilidade de RNA , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo
18.
Protein Cell ; 9(11): 930-944, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29380205

RESUMO

The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5'-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5'-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5'- and 3'-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.


Assuntos
Hepacivirus/crescimento & desenvolvimento , Hepacivirus/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Células Cultivadas , Hepacivirus/genética , Humanos , Replicação Viral/genética
19.
Virol Sin ; 32(6): 465-475, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28971350

RESUMO

Feasible and effective cell models for hepatitis B virus (HBV) infection are required for investigating the complete lifecycle of this virus, including the early steps of viral entry. Resistance to dimethyl sulfoxide/polyethylene glycol (DMSO/PEG), hNTCP expression, and a differentiated state are the limiting factors for successful HBV infection models. In the present study, we used a hepatoma cell line (Huh7DhNTCP) to overcome these limiting factors so that it exhibits excellent susceptibility to HBV infection. To achieve this goal, different hepatoma cell lines were tested with 2.5% DMSO / 4% PEG8000, and one resistant cell line (Huh7D) was used to construct a stable hNTCP-expressing cell line (Huh7DhNTCP) using a recombinant lentivirus system. Then, the morphological characteristics and differentiation molecular markers of Huh7DhNTCP cells with or without DMSO treatment were characterized. Finally, the susceptibility of Huh7DhNTCP cells to HBV infection was assessed. Our results showed that Huh7D cells were resistant to 2.5% DMSO / 4% PEG8000, whereas the others were not. Huh7DhNTCP cells were established to express a high level of hNTCP compared to liver extracts, and Huh7DhNTCP cells rapidly transformed into a non-dividing, well-differentiated polarized phenotype under DMSO treatment. Huh7DhNTCP cells fully supported the entire lifecycle of HBV infection. This cell culture system will be useful for the analysis of host-virus interactions, which should facilitate the discovery of antiviral drugs and vaccines.


Assuntos
Vírus da Hepatite B/crescimento & desenvolvimento , Hepatócitos/virologia , Cultura de Vírus/métodos , Linhagem Celular Tumoral , Meios de Cultura/química , Dimetil Sulfóxido/metabolismo , Expressão Gênica , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/biossíntese , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Polietilenoglicóis/metabolismo , Simportadores/biossíntese , Simportadores/genética
20.
Virus Res ; 210: 119-25, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26260331

RESUMO

Immune escape mutants with mutations in the hepatitis B surface antigen (HBsAg) major hydrophilic region (MHR) often emerge in association with diagnostic failure or breakthrough of HBV infection in patients with anti-HBs antibodies. Some mutants harboring substitutions to Asn in HBsAg MHR may have an additional potential N-glycosylation site. We have previously showed that sT123N substitution could generate additional N-glycosylated forms of HBsAg. In the present study, 1.3-fold-overlength HBV genomes containing the sT123N substitution were digested from the pHBV1.3-sT123N construct and subcloned into the pAAV vector to generate pAAV1.3-sT123N for hydrodynamic injection (HI) in mice. Viral expression and replication were phenotypically characterized by transient transfection. The results demonstrated that sT123N substitution impaired virion secretion, resulting in intracellular retention of HBcAg. Using the HBV HI mouse model, we found that mice mounted significantly stronger antibody responses to HBsAg and HBcAg, which accelerated HBsAg clearance. Thus, additional N-glycosylation generated by amino acid substitutions in HBsAg MHR may significantly modulate specific host immune responses and influence HBV infection in vivo. Our results help further the understanding of the role of immune escape mutants with N-linked glycosylation in the biology of HBV infection.


Assuntos
Formação de Anticorpos , Anticorpos Anti-Hepatite B/sangue , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/imunologia , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA