Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(4): 663-681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324229

RESUMO

Fetal critical aortic stenosis with evolving hypoplastic left heart syndrome (CAS-eHLHS) causes biomechanical and functional aberrations, leading to a high risk of progression to hypoplastic left heart syndrome (HLHS) at birth. Fetal aortic valvuloplasty (FAV) can resolve outflow obstruction and may reduce progression risk. However, it is currently difficult to accurately predict which patients will respond to the intervention and become functionally biventricular (BV) at birth, as opposed to becoming functionally univentricular (UV). This prediction is important for patient selection, parental counselling, and surgical planning. Therefore, we investigated whether biomechanics parameters from pre-FAV image-based computations could robustly distinguish between CAS-eHLHS cases with BV or UV outcomes in a retrospective cohort. To do so we performed image-based finite element biomechanics modelling of nine CAS-eHLHS cases undergoing intervention and six healthy fetal control hearts, and found that a biomechanical parameter, peak systolic myofibre stress, showed a uniquely large difference between BV and UV cases, which had a larger magnitude effect than echocardiography parameters. A simplified equation was derived for quick and easy estimation of myofibre stress from echo measurements via principal component analysis. When tested on a retrospective cohort of 37 CAS-eHLHS cases, the parameter outperformed other parameters in predicting UV versus BV outcomes, and thus has a high potential of improving outcome predictions, if incorporated into patient selection procedures. Physiologically, high myocardial stresses likely indicate a healthier myocardium that can withstand high stresses and resist pathological remodelling, which can explain why it is a good predictor of BV outcomes. KEY POINTS: Predicting the morphological birth outcomes (univentricular versus biventricular) of fetal aortic valvuloplasty for fetal aortic stenosis with evolving HLHS is important for accurate patient selection, parental counselling and management decisions. Computational simulations show that a biomechanics parameter, pre-intervention peak systolic myofibre stress, is uniquely robust in distinguishing between such outcomes, outperforming all echo parameters. An empirical equation was developed to quickly compute peak systolic myofibre stress from routine echo measurements and was the best predictor of outcomes among a wide range of parameters tested.


Assuntos
Estenose da Valva Aórtica , Síndrome do Coração Esquerdo Hipoplásico , Recém-Nascido , Humanos , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Síndrome do Coração Esquerdo Hipoplásico/terapia , Síndrome do Coração Esquerdo Hipoplásico/etiologia , Estudos Retrospectivos , Estenose da Valva Aórtica/diagnóstico por imagem , Coração Fetal , Miocárdio
2.
J Physiol ; 602(4): 597-617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345870

RESUMO

Cardiac trabeculae are uneven ventricular muscular structures that develop during early embryonic heart development at the outer curvature of the ventricle. Their biomechanical function is not completely understood, and while their formation is known to be mechanosensitive, it is unclear whether ventricular tissue internal stresses play an important role in their formation. Here, we performed imaging and image-based cardiac biomechanics simulations on zebrafish embryonic ventricles to investigate these issues. Microscopy-based ventricular strain measurements show that the appearance of trabeculae coincided with enhanced deformability of the ventricular wall. Image-based biomechanical simulations reveal that the presence of trabeculae reduces ventricular tissue internal stresses, likely acting as structural support in response to the geometry of the ventricle. Passive ventricular pressure-loading experiments further reveal that the formation of trabeculae is associated with a spatial homogenization of ventricular tissue stiffnesses in healthy hearts, but gata1 morphants with a disrupted trabeculation process retain a spatial stiffness heterogeneity. Our findings thus suggest that modulating ventricular wall deformability, stresses, and stiffness are among the biomechanical functions of trabeculae. Further, experiments with gata1 morphants reveal that a reduction in fluid pressures and consequently ventricular tissue internal stresses can disrupt trabeculation, but a subsequent restoration of ventricular tissue internal stresses via vasopressin rescues trabeculation, demonstrating that tissue stresses are important to trabeculae formation. Overall, we find that tissue biomechanics is important to the formation and function of embryonic heart trabeculation. KEY POINTS: Trabeculations are fascinating and important cardiac structures and their abnormalities are linked to embryonic demise. However, their function in the heart and their mechanobiological formation processes are not completely understood. Our imaging and modelling show that tissue biomechanics is the key here. We find that trabeculations enhance cardiac wall deformability, reduce fluid pressure stresses, homogenize wall stiffness, and have alignments that are optimal for providing load-bearing structural support for the heart. We further discover that high ventricular tissue internal stresses consequent to high fluid pressures are needed for trabeculation formation through a rescue experiment, demonstrating that myocardial tissue stresses are as important as fluid flow wall shear stresses for trabeculation formation.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Fenômenos Biomecânicos , Transdução de Sinais/fisiologia , Miocárdio , Coração , Ventrículos do Coração
3.
Adv Exp Med Biol ; 1441: 201-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884713

RESUMO

A well-developed heart is essential for embryonic survival. There are constant interactions between cardiac tissue motion and blood flow, which determine the heart shape itself. Hemodynamic forces are a powerful stimulus for cardiac growth and differentiation. Therefore, it is particularly interesting to investigate how the blood flows through the heart and how hemodynamics is linked to a particular species and its development, including human. The appropriate patterns and magnitude of hemodynamic stresses are necessary for the proper formation of cardiac structures, and hemodynamic perturbations have been found to cause malformations via identifiable mechanobiological molecular pathways. There are significant differences in cardiac hemodynamics among vertebrate species, which go hand in hand with the presence of specific anatomical structures. However, strong similarities during development suggest a common pattern for cardiac hemodynamics in human adults. In the human fetal heart, hemodynamic abnormalities during gestation are known to progress to congenital heart malformations by birth. In this chapter, we discuss the current state of the knowledge of the prenatal cardiac hemodynamics, as discovered through small and large animal models, as well as from clinical investigations, with parallels gathered from the poikilotherm vertebrates that emulate some hemodynamically significant human congenital heart diseases.


Assuntos
Coração , Hemodinâmica , Humanos , Animais , Hemodinâmica/fisiologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Cardiopatias Congênitas/fisiopatologia
4.
PLoS Comput Biol ; 18(6): e1010142, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666714

RESUMO

Embryonic heart development is a mechanosensitive process, where specific fluid forces are needed for the correct development, and abnormal mechanical stimuli can lead to malformations. It is thus important to understand the nature of embryonic heart fluid forces. However, the fluid dynamical behaviour close to the embryonic endocardial surface is very sensitive to the geometry and motion dynamics of fine-scale cardiac trabecular surface structures. Here, we conducted image-based computational fluid dynamics (CFD) simulations to quantify the fluid mechanics associated with the zebrafish embryonic heart trabeculae. To capture trabecular geometric and motion details, we used a fish line that expresses fluorescence at the endocardial cell membrane, and high resolution 3D confocal microscopy. Our endocardial wall shear stress (WSS) results were found to exceed those reported in existing literature, which were estimated using myocardial rather than endocardial boundaries. By conducting simulations of single intra-trabecular spaces under varied scenarios, where the translational or deformational motions (caused by contraction) were removed, we found that a squeeze flow effect was responsible for most of the WSS magnitude in the intra-trabecular spaces, rather than the shear interaction with the flow in the main ventricular chamber. We found that trabecular structures were responsible for the high spatial variability of the magnitude and oscillatory nature of WSS, and for reducing the endocardial deformational burden. We further found cells attached to the endocardium within the intra-trabecular spaces, which were likely embryonic hemogenic cells, whose presence increased endocardial WSS. Overall, our results suggested that a complex multi-component consideration of both anatomic features and motion dynamics were needed to quantify the trabeculated embryonic heart fluid mechanics.


Assuntos
Modelos Cardiovasculares , Peixe-Zebra , Animais , Coração , Hidrodinâmica , Organogênese , Estresse Mecânico
5.
Dev Dyn ; 250(12): 1759-1777, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34056790

RESUMO

BACKGROUND: Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS: Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS: Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.


Assuntos
Fenômenos Biomecânicos/efeitos dos fármacos , Diacetil/análogos & derivados , Coração/embriologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos/fisiologia , Diacetil/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiologia , Hidrodinâmica , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Organogênese/efeitos dos fármacos , Organogênese/genética , Organogênese/fisiologia , Estresse Mecânico , Peixe-Zebra/embriologia , Peixe-Zebra/genética
6.
Pediatr Res ; 90(4): 801-808, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33504964

RESUMO

BACKGROUND: Intrauterine growth restriction (IUGR) leads to cardiac dysfunction and adverse remodeling of the fetal heart, as well as a higher risk of postnatal cardiovascular diseases. The rat model of IUGR, via uterine artery ligation, is a popular model but its cardiac sequelae is not well investigated. Here, we performed an echocardiographic evaluation of its cardiac function to determine how well it can represent the disease in humans. METHODS: Unilateral uterine artery ligation was performed at embryonic day 17 (E17) and echocardiography was performed at E19 and E20. RESULTS: Growth-restricted fetuses were significantly smaller and lighter, and had an higher placenta-to-fetus weight ratio. Growth-restricted fetal hearts had reduced wall thickness-to-diameter ratio, indicating left ventricular (LV) dilatation, and they had elevated trans-mitral and trans-tricuspid E/A ratios and reduced left and right ventricular fractional shortening (FS), suggesting systolic and diastolic dysfunction. These were similar to human IUGR fetuses. However, growth-restricted rat fetuses did not demonstrate head-sparing effect, displayed a lower LV myocardial performance index, and ventricular outflow velocities were not significantly reduced, which were dissimilar to human IUGR fetuses. CONCLUSIONS: Despite the differences, our results suggest that this IUGR model has significant cardiac dysfunction, and could be a suitable model for studying IUGR cardiovascular physiology. IMPACT: Animal models of IUGR are useful, but their fetal cardiac function is not well studied, and it is unclear if they can represent human IUGR fetuses. We performed an echocardiographic assessment of the heart function of a fetal rat model of IUGR, created via maternal uterine artery ligation. Similar to humans, the model displayed LV dilatation, elevated E/A ratios, and reduced FS. Different from humans, the model displayed reduced MPI, and no significant outflow velocity reduction. Despite differences with humans, this rat model still displayed cardiac dysfunction and is suitable for studying IUGR cardiovascular physiology.


Assuntos
Ecocardiografia , Retardo do Crescimento Fetal/fisiopatologia , Testes de Função Cardíaca , Coração/embriologia , Artéria Uterina/patologia , Animais , Peso Corporal , Constrição , Modelos Animais de Doenças , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Ultrassonografia Pré-Natal
7.
Prenat Diagn ; 41(4): 505-516, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462877

RESUMO

OBJECTIVE: To investigate the performance of the machine learning (ML) model in predicting small-for-gestational-age (SGA) at birth, using second-trimester data. METHODS: Retrospective data of 347 patients, consisting of maternal demographics and ultrasound parameters collected between the 20th and 25th gestational weeks, were studied. ML models were applied to different combinations of the parameters to predict SGA and severe SGA at birth (defined as 10th and third centile birth weight). RESULTS: Using second-trimester measurements, ML models achieved an accuracy of 70% and 73% in predicting SGA and severe SGA whereas clinical guidelines had accuracies of 64% and 48%. Uterine PI (Ut PI) was found to be an important predictor, corroborating with existing literature, but surprisingly, so was nuchal fold thickness (NF). Logistic regression showed that Ut PI and NF were significant predictors and statistical comparisons showed that these parameters were significantly different in disease. Further, including NF was found to improve ML model performance, and vice versa. CONCLUSION: ML could potentially improve the prediction of SGA at birth from second-trimester measurements, and demonstrated reduced NF to be an important predictor. Early prediction of SGA allows closer clinical monitoring, which provides an opportunity to discover any underlying diseases associated with SGA.


Assuntos
Recém-Nascido Pequeno para a Idade Gestacional/crescimento & desenvolvimento , Aprendizado de Máquina/normas , Medição da Translucência Nucal/classificação , Valor Preditivo dos Testes , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Modelos Logísticos , Aprendizado de Máquina/estatística & dados numéricos , Masculino , Medição da Translucência Nucal/estatística & dados numéricos , Estudos Retrospectivos , Singapura/epidemiologia
8.
Am J Physiol Heart Circ Physiol ; 315(6): H1649-H1659, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216114

RESUMO

Studies have suggested the effect of blood flow forces in pathogenesis and progression of some congenital heart malformations. It is therefore of interest to study the fluid mechanic environment of the malformed prenatal heart, such as the tetralogy of Fallot (TOF), especially when little is known about fetal TOF. In this study, we performed patient-specific ultrasound-based flow simulations of three TOF and seven normal human fetal hearts. TOF right ventricles (RVs) had smaller end-diastolic volumes (EDVs) but similar stroke volumes (SVs), whereas TOF left ventricles (LVs) had similar EDVs but slightly increased SVs compared with normal ventricles. Simulations showed that TOF ventricles had elevated systolic intraventricular pressure gradient (IVPG) and required additional energy for ejection but IVPG elevations were considered to be mild relative to arterial pressure. TOF RVs and LVs had similar pressures because of equalization via ventricular septal defect (VSD). Furthermore, relative to normal, TOF RVs had increased diastolic wall shear stresses (WSS) but TOF LVs were not. This was caused by high tricuspid inflow that exceeded RV SV, leading to right-to-left shunting and chaotic flow with enhanced vorticity interaction with the wall to elevate WSS. Two of the three TOF RVs but none of the LVs had increased thickness. As pressure elevations were mild, we hypothesized that pressure and WSS elevation could play a role in the RV thickening, among other causative factors. Finally, the endocardium surrounding the VSD consistently experienced high WSS because of RV-to-LV flow shunt and high flow rate through the over-riding aorta. NEW & NOTEWORTHY Blood flow forces are thought to cause congenital heart malformations and influence disease progression. We performed novel investigations of intracardiac fluid mechanics of tetralogy of Fallot (TOF) human fetal hearts and found essential differences from normal hearts. The TOF right ventricle (RV) and left ventricle had similar and elevated pressure but only the TOF RV had elevated wall shear stress because of elevated tricuspid inflow, and this may contribute to the observed RV thickening. TOF hearts also expended more energy for ejection.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Tetralogia de Fallot/fisiopatologia , Adulto , Feminino , Coração Fetal/diagnóstico por imagem , Humanos , Recém-Nascido , Contração Miocárdica , Gravidez , Tetralogia de Fallot/diagnóstico por imagem
9.
Langmuir ; 34(44): 13409-13415, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30350689

RESUMO

Directly harvesting water from the atmosphere could aid in negating the issue of fresh water scarcity, garnering increased research interest in recent years. Typically, atmospheric water collection occurs via three main steps: accumulation, transportation, and collection. Although multiple studies have been published on bioinspired structures with enhanced directional fluid transportation, there is a significant lack of designs for enhancing water droplet coalescence. Long mean times before coalescence result in the re-evaporation of microdroplets, severely impeding the efficiency of atmospheric water collection. Herein, a water accumulator derived from a synergistic combination of inspiration from cacti spines and Tillandsia trichomes has been designed to encourage rapid coalescence. The drip-off volume measured in a fog chamber was found to be 220% that of a flat surface within 15 min, suggesting that improving the coalescence efficiency will be important in the future development of water-collection devices.

10.
Artif Organs ; 41(2): 178-185, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27653754

RESUMO

Roller pumps are widely used in many medical procedures including cardiopulmonary bypass, left/right ventricular assist, and hemodialysis. However, to date, the problem of the roller pumping mechanism causing significant hemolysis remains unresolved. It has been shown that with under-occlusion of the roller pump, hemolysis can be reduced, but significant reduction of the mean flow rate also takes place due to backflow through the under-occlusion. We performed an investigation of the flow dynamics of an under-occluded roller pump which featured significantly higher amount of under-occlusion than previously investigated. Our results showed that the mean flow rate produced by the pump has a strong, nonlinear dependence on pumping frequency. Mean flow rate generally increases with the pumping frequency and the degree of maximum occlusion except at certain frequencies where sharp reductions were observed. These frequencies coincide with the fundamental frequency of the system and its harmonics, bearing resemblance to the impedance pump, suggesting that the drastically under-occluded roller pump is a unique device that employs the pumping mechanisms of both roller pumping and impedance pumping. At the appropriate frequencies, this under-occluded roller pump could sustain sufficiently high flow rates for clinical uses. Blood damage potential of the under-occluded roller pump was compared to a fully occluded roller pump via the assay of free-plasma hemoglobin, and it was found that the under-occlusion reduced hemolysis by about half for any given flow rate. The drastically under-occluded roller pumping reported in this study, therefore, has the potential of being translated into an improved clinical blood pump.


Assuntos
Circulação Assistida/efeitos adversos , Eritrócitos/patologia , Hemólise , Animais , Circulação Assistida/instrumentação , Velocidade do Fluxo Sanguíneo , Desenho de Equipamento , Hidrodinâmica , Dinâmica não Linear , Fluxo Pulsátil , Suínos
11.
Am J Physiol Heart Circ Physiol ; 311(6): H1498-H1508, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663769

RESUMO

There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts.


Assuntos
Coração Fetal/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica/fisiologia , Hidrodinâmica , Simulação por Computador , Diástole , Ecocardiografia Quadridimensional , Feminino , Coração Fetal/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Gravidez , Segundo Trimestre da Gravidez , Resistência ao Cisalhamento , Sístole , Ultrassonografia Pré-Natal
12.
Artigo em Inglês | MEDLINE | ID: mdl-38683446

RESUMO

Fetal critical aortic stenosis with evolving hypoplastic left heart syndrome (CAS-eHLHS) can progress to a univentricular (UV) birth malformation. Catheter-based fetal aortic valvuloplasty (FAV) can resolve stenosis and reduce the likelihood of malformation progression. However, we have limited understanding of the biomechanical impact of FAV and subsequent LV responses. Therefore, we performed image-based finite element (FE) modeling of 4 CAS-eHLHS fetal hearts, by performing iterative simulations to match image-based characteristics and then back-computing physiological parameters. We used pre-FAV simulations to conduct virtual FAV (vFAV) and compared pre-FAV and post-FAV simulations. vFAV simulations generally enabled partial restoration of several physiological features toward healthy levels, including increased stroke volume and myocardial strains, reduced aortic valve (AV) and mitral valve regurgitation (MVr) velocities, reduced LV and LA pressures, and reduced peak myofiber stress. FAV often leads to aortic valve regurgitation (AVr). Our simulations showed that AVr could compromise LV and LA depressurization but it could also significantly increase stroke volume and myocardial deformational stimuli. Post-FAV scans and simulations showed FAV enabled only partial reduction of the AV dissipative coefficient. Furthermore, LV contractility and peripheral vascular resistance could change in response to FAV, preventing decreases in AV velocity and LV pressure, compared with what would be anticipated from stenosis relief. This suggested that case-specific post-FAV modeling is required to fully capture cardiac functionality. Overall, image-based FE modeling could provide mechanistic details of the effects of FAV, but computational prediction of acute outcomes was difficult due to a patient-dependent physiological response to FAV.

13.
Sci Rep ; 14(1): 11577, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773243

RESUMO

Fluid dynamics computations for tube-like geometries are crucial in biomedical evaluations of vascular and airways fluid dynamics. Physics-Informed Neural Networks (PINNs) have emerged as a promising alternative to traditional computational fluid dynamics (CFD) methods. However, vanilla PINNs often demand longer training times than conventional CFD methods for each specific flow scenario, limiting their widespread use. To address this, multi-case PINN approach has been proposed, where varied geometry cases are parameterized and pre-trained on the PINN. This allows for quick generation of flow results in unseen geometries. In this study, we compare three network architectures to optimize the multi-case PINN through experiments on a series of idealized 2D stenotic tube flows. The evaluated architectures include the 'Mixed Network', treating case parameters as additional dimensions in the vanilla PINN architecture; the "Hypernetwork", incorporating case parameters into a side network that computes weights in the main PINN network; and the "Modes" network, where case parameters input into a side network contribute to the final output via an inner product, similar to DeepONet. Results confirm the viability of the multi-case parametric PINN approach, with the Modes network exhibiting superior performance in terms of accuracy, convergence efficiency, and computational speed. To further enhance the multi-case PINN, we explored two strategies. First, incorporating coordinate parameters relevant to tube geometry, such as distance to wall and centerline distance, as inputs to PINN, significantly enhanced accuracy and reduced computational burden. Second, the addition of extra loss terms, enforcing zero derivatives of existing physics constraints in the PINN (similar to gPINN), improved the performance of the Mixed Network and Hypernetwork, but not that of the Modes network. In conclusion, our work identified strategies crucial for future scaling up to 3D, wider geometry ranges, and additional flow conditions, ultimately aiming towards clinical utility.

14.
Comput Biol Med ; 172: 108282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503085

RESUMO

Cardiac ultrasound (US) image segmentation is vital for evaluating clinical indices, but it often demands a large dataset and expert annotations, resulting in high costs for deep learning algorithms. To address this, our study presents a framework utilizing artificial intelligence generation technology to produce multi-class RGB masks for cardiac US image segmentation. The proposed approach directly performs semantic segmentation of the heart's main structures in US images from various scanning modes. Additionally, we introduce a novel learning approach based on conditional generative adversarial networks (CGAN) for cardiac US image segmentation, incorporating a conditional input and paired RGB masks. Experimental results from three cardiac US image datasets with diverse scan modes demonstrate that our approach outperforms several state-of-the-art models, showcasing improvements in five commonly used segmentation metrics, with lower noise sensitivity. Source code is available at https://github.com/energy588/US2mask.


Assuntos
Inteligência Artificial , Ecocardiografia , Algoritmos , Benchmarking , Semântica , Processamento de Imagem Assistida por Computador
15.
Artigo em Inglês | MEDLINE | ID: mdl-38589684

RESUMO

Finite Element simulations are a robust way of investigating cardiac biomechanics. To date, it has only been performed with the left ventricle (LV) alone for fetal hearts, even though results are likely different with biventricular (BiV) simulations. In this research, we conduct BiV simulations of the fetal heart based on 4D echocardiography images to show that it can capture the biomechanics of the normal healthy fetal heart, as well as those of fetal aortic stenosis better than the LV alone simulations. We found that performing LV alone simulations resulted in overestimation of LV stresses and pressures, compared to BiV simulations. Interestingly, inserting a compliance between the LV and right ventricle (RV) in the lumped parameter model of the LV only simulation effectively resolved these overestimations, demonstrating that the septum could be considered to play a LV-RV pressure communication role. However, stresses and strains spatial patterns remained altered from BiV simulations after the addition of the compliance. The BiV simulations corroborated previous studies in showing disease effects on the LV, where fetal aortic stenosis (AS) drastically elevated LV pressures and reduced strains and stroke volumes, which were moderated down with the addition of mitral regurgitation (MR). However, BiV simulations enabled an evaluation of the RV as well, where we observed that effects of the AS and MR on pressures and stroke volumes were generally much smaller and less consistent. The BiV simulations also enabled investigations of septal dynamics, which showed a rightward shift with AS, and partial restoration with MR. Interestingly, AS tended to enhance RV stroke volume, but MR moderated that down.

16.
Front Cardiovasc Med ; 11: 1349338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798923

RESUMO

Introduction: Ejection fraction (EF) is widely used to evaluate heart function during heart failure (HF) due to its simplicity compared but it may misrepresent cardiac function during ventricular hypertrophy, especially in heart failure with preserved EF (HFpEF). To resolve this shortcoming, we evaluate a correction factor to EF, which is equivalent to computing EF at the mid-wall layer (without the need for mid-layer identification) rather than at the endocardial surface, and thus better complements other complex metrics. Method: The retrospective cohort data was studied, consisting of 2,752 individuals (56.5% male, age 69.3 ± 16.4 years) admitted with a request of a troponin test and undergoing echocardiography as part of their clinical assessment across three centres. Cox-proportional regression models were constructed to compare the adjusted EF (EFa) to EF in evaluating risk of heart failure admissions. Result: Comparing HFpEF patients to non-HF cases, there was no significant difference in EF (62.3 ± 7.6% vs. 64.2 ± 6.2%, p = 0.79), but there was a significant difference in EFa (56.6 ± 6.4% vs. 61.8 ± 9.9%, p = 0.0007). Both low EF and low EFa were associated with a high HF readmission risk. However, in the cohort with a normal EF (EF ≥ 50%), models using EFa were significantly more associative with HF readmissions within 3 years, where the leave one out cross validation ROC analysis showed a 18.6% reduction in errors, and Net Classification Index (NRI) analysis showed that risk increment classification of events increased by 12.2%, while risk decrement classification of non-events decreased by 16.6%. Conclusion: EFa is associated with HF readmission in patients with a normal EF.

17.
ACS Appl Mater Interfaces ; 16(4): 4307-4320, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240181

RESUMO

Hemorrhage is the leading cause of trauma death, and innovation in hemostatic technology is important. The strongly hydrophobic carbon nanofiber (CNF) coating has previously been shown to have excellent hemostatic properties. However, the understanding of how CNF coating guides the coagulation cascade and the biosafety of CNF as hemostatic agents has yet to be explored. Here, our thrombin generation assay investigation showed that CNF induced fast blood coagulation via factor (F) XII activation of the intrinsic pathway. We further performed studies of a rat vein injury and demonstrated that the CNF gauze enabled a substantial reduction of blood loss compared to both the plain gauze and kaolin-imbued gauze (QuikClot). Analysis of blood samples from the model revealed no acute toxicity from the CNF gauze, with no detectable CNF deposition in any organ, suggesting that the immobilization of CNF on our gauze prevented the infiltration of CNF into the bloodstream. Direct injection of CNF into the rat vein was also investigated and found not to elicit overt acute toxicity or affect animal survival or behavior. Finally, toxicity assays with primary keratinocytes revealed minimal toxicity responses to CNF. Our studies thus supported the safety and efficacy of the CNF hemostatic gauze, highlighting its potential as a promising approach in the field of hemostatic control.


Assuntos
Hemorragia , Hemostáticos , Ratos , Animais , Hemorragia/prevenção & controle , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Coagulação Sanguínea , Hemostasia , Interações Hidrofóbicas e Hidrofílicas , Modelos Animais de Doenças
18.
R Soc Open Sci ; 10(7): 230142, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476520

RESUMO

Increased cardiac stiffness hinders proper left ventricular (LV) expansion, resulting in decreased volume and diastolic dysfunction. LV expanders are spring-like devices designed to improve diastolic function by facilitating mechanical outward expansion. Implantations in animals and humans have shown promising results, yet further evaluation is needed to assess a range of functions and the risk of use. In this computational study, the effectiveness and potential use of a generic LV expander were assessed by using previously generated finite-element models of induced heart failure with preserved ejection fraction (HFpEF). Following implantation, the treated models were compared to the corresponding untreated and healthy pre-induction models. The influence of device orientation and its material properties was also examined. Our results demonstrated a reduction in LV pressure and a volumetric improvement. Computed LV stresses have shown no gross irregularities. The device contributed to stress elevation during diastole while having a minor effect during systole, supporting a basic safety profile. This is the first study to use numerical analysis to assess LV expanders' performance on different HFpEF phenotypes. Improvement in heart function was demonstrated in both subjects, suggesting its potential use in various HFpEF manifestations, yet customization and optimal deployment are essential to improve heart performance.

19.
Ann Biomed Eng ; 51(7): 1485-1498, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36780051

RESUMO

Fetuses with critical aortic stenosis (FAS) are at high risk of progression to HLHS by the time of birth (and are thus termed "evolving HLHS"). An in-utero catheter-based intervention, fetal aortic valvuloplasty (FAV), has shown promise as an intervention strategy to circumvent the progression, but its impact on the heart's biomechanics is not well understood. We performed patient-specific computational fluid dynamic (CFD) simulations based on 4D fetal echocardiography to assess the changes in the fluid mechanical environment in the FAS left ventricle (LV) directly before and 2 days after FAV. Echocardiograms of five FAS cases with technically successful FAV were retrospectively analysed. FAS compromised LV stroke volume and ejection fraction, but FAV rescued it significantly. Calculations to match simulations to clinical measurements showed that FAV approximately doubled aortic valve orifice area, but it remained much smaller than in healthy hearts. Diseased LVs had mildly stenotic mitral valves, which generated fast and narrow diastolic mitral inflow jet and vortex rings that remained unresolved directly after FAV. FAV further caused aortic valve damage and high-velocity regurgitation. The high-velocity aortic regurgitation jet and vortex ring caused a chaotic flow field upon impinging the apex, which drastically exacerbated the already high energy losses and poor flow energy efficiency of FAS LVs. Two days after the procedure, FAV did not alter wall shear stress (WSS) spatial patterns of diseased LV but elevated WSS magnitudes, and the poor blood turnover in pre-FAV LVs did not significantly improve directly after FAV. FAV improved FAS LV's flow function, but it also led to highly chaotic flow patterns and excessively high energy losses due to the introduction of aortic regurgitation directly after the intervention. Further studies analysing the effects several weeks after FAV are needed to understand the effects of such biomechanics on morphological development.


Assuntos
Insuficiência da Valva Aórtica , Estenose da Valva Aórtica , Síndrome do Coração Esquerdo Hipoplásico , Humanos , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Estudos Retrospectivos , Estenose da Valva Aórtica/diagnóstico por imagem , Feto
20.
Comput Biol Med ; 155: 106624, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774890

RESUMO

The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis.


Assuntos
Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/diagnóstico , Pele/patologia , Diagnóstico por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA