Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phys Chem Chem Phys ; 20(40): 25829-25840, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30285019

RESUMO

The combination of cross-polarization (CP) with flip-back (FB) pulse has enabled in NMR the enhancement of 13C sensitivity and the decrease of the recycling delay at both moderate and fast magic-angle spinning (MAS) frequencies. However, only continuous-wave (CW) decoupling is presently compatible with FB-pulse (FB-CW), and depending on the CW radio-frequency (rf) field, either an insignificant sensitivity gain or an acquisition time-dependent gain and a low 13C resolution are obtained. In this study, we propose a new FB-pulse method in which radio frequency-driven recoupling (RFDR) is used as the 1H-13C decoupling scheme to overcome these drawbacks. The performances of FB-RFDR in terms of decoupling efficiency and sensitivity gain are tested on both natural abundance (NA) and uniformly 13C-15N labeled l-histidine·HCl·H2O (Hist) samples at a MAS frequency of νR = 70 kHz. The results show the superiority of RFDR over the CW decoupling with respect to these criteria. Importantly, they reveal that the sensitivity gain offered by FB-RFDR is nearly independent of the decoupling/acquisition duration. The application of FB-RFDR on NA-Hist and sucrose yields a sensitivity gain between 60 and 100% compared to conventional FB-CW and CPMAS-SPINAL experiments. Moreover, we compare the 13C sensitivities of NA-Hist obtained by our 1D FB-RFDR method and 2D 1H-{13C} double-CP acquisition. Both methods provide similar 13C sensitivity and are complementary. Indeed, the 2D method has the advantage of also providing the 1H-13C spatial proximities, but its sensitivity for quaternary carbons is limited; whereas our 1D FB-RFDR method is more independent of the type of carbon, and can provide a 13C 1D spectrum in a shorter experimental time. We also test the feasibility of FB-RFDR at a moderate frequency of νR = 20 kHz, but the experimental results demonstrate a poor resolution as well as a negligible sensitivity gain.

2.
Solid State Nucl Magn Reson ; 76-77: 1-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27017575

RESUMO

Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

3.
J Fungi (Basel) ; 10(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535227

RESUMO

The fungal cell wall plays a critical role in regulating cellular integrity and communication, and serves as a frontline defense against stress. It is also a prime target for the development of antifungal agents. The cell wall is comprised of diverse polysaccharides and proteins and poses a challenging target for high-resolution structural characterization. Recently, the solid-state nuclear magnetic resonance (ssNMR) analysis of intact Aspergillus fumigatus cells has provided atomic-level insights into the structural polymorphism and functional assembly principles of carbohydrate components within the cell wall. This physical perspective, alongside structural information from biochemical assays, offers a renewed understanding of the cell wall as a highly complex and dynamic organelle. Here, we summarize key conceptual advancements in the structural elucidation of A. fumigatus mycelial and conidial cell walls and their responses to stressors. We also highlight underexplored areas and discuss the opportunities facilitated by technical advancements in ssNMR spectroscopy.

4.
bioRxiv ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39185159

RESUMO

Invasive aspergillosis poses a significant threat to immunocompromised patients, leading to high mortality rates associated with these infections. Targeting the biosynthesis of cell wall carbohydrates is a promising strategy for antifungal drug development and will be advanced by a molecular-level understanding of the native structures of polysaccharides within their cellular context. Solid-state NMR spectroscopy has recently provided detailed insights into the cell wall organization of Aspergillus fumigatus , but genetic and biochemical evidence highlights species-specific differences among Aspergillus species. In this study, we employed a combination of 13 C, 15 N, and 1 H-detection solid-state NMR, supplemented by Dynamic Nuclear Polarization (DNP), to compare the structural organization of cell wall polymers and their assembly in the cell walls of A. fumigatus and A. nidulans , both of which are key model organisms and human pathogens. The two species exhibited a similar rigid core architecture, consisting of chitin, α-glucan, and ß-glucan, which contributed to comparable cell wall properties, including polymer dynamics, water retention, and supramolecular organization. However, differences were observed in the chitin, galactosaminogalactan, protein, and lipid content, as well as in the dynamics of galactomannan and the structure of the glucan matrix.

5.
J Phys Chem B ; 125(9): 2212-2221, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33635078

RESUMO

Understanding and describing the dynamics of proteins is one of the major challenges in biology. Here, we use multifield variable-temperature NMR longitudinal relaxation (R1) measurements to determine the hierarchical activation energies of motions of four different proteins: two small globular proteins (GB1 and the SH3 domain of α-spectrin), an intrinsically disordered protein (the C-terminus of the nucleoprotein of the Sendai virus, Sendai Ntail), and an outer membrane protein (OmpG). The activation energies map the motions occurring in the side chains, in the backbone, and in the hydration shells of the proteins. We were able to identify similarities and differences in the average motions of the proteins. We find that the NMR relaxation properties of the four proteins do share similar features. The data characterizing average backbone motions are found to be very similar, the same for methyl group rotations, and similar activation energies are measured. The main observed difference occurs for the intrinsically disordered Sendai Ntail, where we observe much lower energy of activation for motions of protons associated with the protein-solvent interface as compared to the others. We also observe variability between the proteins regarding side chain 15N relaxation of lysine residues, with a higher activation energy observed in OmpG. This hints at strong interactions with negatively charged lipids in the bilayer and provides a possible mechanistic clue for the "positive-inside" rule for helical membrane proteins. Overall, these observations refine the understanding of the similarities and differences between hierarchical dynamics in proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Prótons , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Temperatura , Domínios de Homologia de src
6.
Chem Biol Drug Des ; 95(3): 394-407, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755652

RESUMO

The construction of complex protein folds relies on the precise conversion of a linear polypeptide chain into a compact 3-dimensional structure. In this context, study of isolated secondary structural modules containing short stretches of amino acids assumes significance. Additionally, peptides, both natural and synthetic, play a major role as potential drugs. With a view to understand the local conformations adopted by peptides in the solid state, we propose a multinuclear NMR approach utilizing spectra of nuclei in their natural isotopic abundance. Various solid-state NMR experiments have been utilized for assignment of the spectra. Additionally, the gauge-including projector augmented-wave (GIPAW) calculations were used to confirm the assignments. Particularly, the utility of the double-quantum-single-quantum correlation experiments is highlighted for the purpose of assignment and for inferring the conformation across the peptide bond. The methodology is illustrated for the case of designed peptides containing diproline residues occurring at the ß-turns for identifying their cis-trans conformational polymorphism. The proposed method promises to be of use in the study of conformations of small- to medium-sized peptides such as antimicrobial peptides and in the study of polymorphism leading to applications in drug development protocols.


Assuntos
Peptídeos/química , Prolina/química , Sequência de Aminoácidos , Cristalização , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
7.
Carbohydr Polym ; 229: 115294, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826473

RESUMO

Chemical modifications of cellulose fibers as pretreatment for cellulose nanofibrils (CNF) production have been investigated to improve the production process and the quality of obtained cellulosic nanomaterial. In this study, phosphorylation of cellulose fibers was done in anticipation of a future nanofibrillation. Different phosphate salts, namely NH4H2PO4, (NH4)2HPO4, Na2HPO4, NaH2PO4 and LiH2PO4 with different constants of solubility (Ks) were used to increase the efficiency of the modification. Phosphorylated cellulose pulps were analyzed using elemental analysis, solid-state 13C and 31P NMR, or conductimetric titration method. No effect of Ks was observed whereas a counterion effect was pointed out. The study also reported the effect of pH, cellulose consistency, temperature and urea content in phosphorylation efficiency. Finally, chemical functionalization and penetration of phosphorylation reagents in the cellulose fibers were evaluated using XPS, SEM-EDX, ToF-SIMS and solid-state NMR.

8.
J Phys Chem Lett ; 10(17): 5064-5069, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31393127

RESUMO

The study of hydration and crystallization processes involving inorganic oxides is often complicated by poor long-range order and the formation of heterogeneous domains or surface layers. In solid-state NMR, 1H-1H spin diffusion analyses can provide information on spatial composition distributions, domain sizes, or miscibility in both ordered and disordered solids. Such analyses have been implemented in organic solids but crucially rely on separate measurements of the 1H spin diffusion coefficients in closely related systems. We demonstrate that an experimental NMR method, in which "holes" of well-defined dimensions are created in proton magnetization, can be applied to determine spin diffusion coefficients in cementitious solids hydrated with 17O-enriched water. We determine proton spin diffusion coefficients of 240 ± 40 nm2/s for hydrated tricalcium aluminate and 140 ± 20 nm2/s for hydrated tricalcium silicate under quasistatic conditions.

9.
J Magn Reson ; 288: 69-75, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414065

RESUMO

DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, l-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.

10.
J Phys Chem B ; 122(42): 9697-9702, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30277399

RESUMO

Understanding the interplay between protein function and dynamics is currently one of the fundamental challenges of physical biology. Recently, a method using variable temperature solid-state nuclear magnetic resonance relaxation measurements has been proposed for the simultaneous measurement of 12 different activation energies reporting on distinct dynamic modes in the protein GB1. Here, we extend this approach to measure relaxation at multiple magnetic field strengths, allowing us to better constrain the motional models and to simultaneously evaluate the robustness and physical basis of the method. The data reveal backbone and side-chain motions, exhibiting low- and high-energy modes with temperature coefficients around 5 and 25 kJ·mol-1. The results are compared to variable temperature molecular dynamics simulation of the crystal lattice, providing further support for the interpretation of the experimental data in terms of molecular motion.


Assuntos
Proteínas de Bactérias/química , Isótopos de Carbono/química , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes , Streptococcus/genética , Temperatura
11.
Chem Commun (Camb) ; 53(7): 1317-1320, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28074945

RESUMO

The proton double quantum-carbon single quantum correlation experiment has been applied to designed peptides in the solid state in natural isotopic abundance. Analogous to nOe studies in solution, through-space double-quantum connectivities have been exploited to obtain the cis-trans conformational polymorphism of diproline residues occurring at ß-turns in the peptides.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Prolina/química , Peptídeos/síntese química , Conformação Proteica , Prótons , Teoria Quântica
12.
J Magn Reson ; 277: 149-153, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28288417

RESUMO

We show how DNP enhanced solid-state NMR spectra can be dramatically simplified by suppression of solvent signals. This is achieved by (i) exploiting the paramagnetic relaxation enhancement of solvent signals relative to materials substrates, or (ii) by using short cross-polarization contact times to transfer hyperpolarization to only directly bonded carbon-13 nuclei in frozen solutions. The methods are evaluated for organic microcrystals, surfaces and frozen solutions. We show how this allows for the acquisition of high-resolution DNP enhanced proton-proton correlation experiments to measure inter-nuclear proximities in an organic solid.

13.
IUCrJ ; 4(Pt 4): 466-475, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875033

RESUMO

There has been significant recent interest in differentiating multicomponent solid forms, such as salts and cocrystals, and, where appropriate, in determining the position of the proton in the X-H⋯A-YX-⋯H-A+-Y continuum in these systems, owing to the direct relationship of this property to the clinical, regulatory and legal requirements for an active pharmaceutical ingredient (API). In the present study, solid forms of simple cocrystals/salts were investigated by high-field (700 MHz) solid-state NMR (ssNMR) using samples with naturally abundant 15N nuclei. Four model compounds in a series of prototypical salt/cocrystal/continuum systems exhibiting {PyN⋯H-O-}/{PyN+-H⋯O-} hydrogen bonds (Py is pyridine) were selected and prepared. The crystal structures were determined at both low and room temperature using X-ray diffraction. The H-atom positions were determined by measuring the 15N-1H distances through 15N-1H dipolar interactions using two-dimensional inversely proton-detected cross polarization with variable contact-time (invCP-VC) 1H→15N→1H experiments at ultrafast (νR ≥ 60-70 kHz) magic angle spinning (MAS) frequency. It is observed that this method is sensitive enough to determine the proton position even in a continuum where an ambiguity of terminology for the solid form often arises. This work, while carried out on simple systems, has implications in the pharmaceutical industry where the salt/cocrystal/continuum condition of APIs is considered seriously.

14.
J Phys Chem Lett ; 8(17): 4253-4257, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28825828

RESUMO

Atomically resolved crystal structures not only suffer from the inherent uncertainty in accurately locating H atoms but also are incapable of fully revealing the underlying forces enabling the formation of final structures. Therefore, the development and application of novel techniques to illuminate intermolecular forces in crystalline solids are highly relevant to understand the role of hydrogen atoms in structure adoption. Novel developments in 1H NMR MAS methodology can now achieve robust measurements of 1H chemical shift anisotropy (CSA) tensors which are highly sensitive to electrostatics. Herein, we use 1H CSA tensors, measured by MAS experiments and characterized using DFT calculations, to reveal the structure-driving factors between the two polymorphic forms of acetaminophen (aka Tylenol or paracetamol) including differences in hydrogen bonding and the role of aromatic interactions. We demonstrate how the 1H CSAs can provide additional insights into the static picture provided by diffraction to elucidate rigid molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA