Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Food ; 5(8): 693-702, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39179871

RESUMO

Cellular agriculture aims to meet the growing demand for animal products. However, current production technologies result in low yields, leading to economic projections that prohibit cultivated meat scalability. Here we use tangential flow filtration for continuous manufacturing of cultivated meat to produce biomass of up to 130 × 106 cells per ml, corresponding to yields of 43% w/v and multiple harvests for over 20 days. Continuous manufacturing was carried out in an animal-component-free culture medium for US$0.63 l-1 that supports the long-term, high density culture of chicken cells. Using this empirical data, we conducted a techno-economic analysis for a theoretical production facility of 50,000 l, showing that the cost of cultivated chicken can drop to within the range of organic chicken at US$6.2 lb-1 by using perfusion technology. Whereas other variables would also affect actual market prices, continuous manufacturing can offer cost reductions for scaling up cultivated meat production.


Assuntos
Galinhas , Análise Custo-Benefício , Carne , Animais , Análise Custo-Benefício/métodos , Carne/economia , Meios de Cultura/economia , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/métodos
2.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446506

RESUMO

The tailored design of drug delivery systems for specific therapeutic agents is a prevailing approach in the field. In this paper, we present a study that highlights the potential of our modified starch, Q-starch, as a universal and adaptable drug delivery carrier for diverse therapeutic agents. We investigate the ability of Q-starch/cargo complexes to target different organelles within the cellular landscape, based on the specific activation sites of therapeutic agents. Plasmid DNA (pDNA), small interfering RNA (siRNA), and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) were chosen as representative therapeutic molecules, acting in the nucleus, cytoplasm, and membrane, respectively. By carrying out comprehensive characterizations, employing dynamic light scattering (DLS), determining the zeta potential, and using cryo-transmitting electron microscopy (cryo-TEM), we reveal the formation of nano-sized, positively charged, and spherical Q-starch complexes. Our results demonstrate that these complexes exhibit efficient cellular uptake, targeting their intended organelles while preserving their physical integrity and functionality. Notably, the intracellular path of the Q-starch/cargo complex is guided by the cargo itself, aligning with its unique biological activity site. This study elucidates the versatility and potency of Q-starch as a versatile drug delivery carrier, paving the way for novel applications offering targeted delivery strategies for potential therapeutic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA