Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(25): 10109-10116, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31244139

RESUMO

Employing single molecules as electronic circuit building blocks is one promising approach to electronic device miniaturization. We report single-molecule junction formation where the orientation of molecules can be controlled externally by the working electrode potential. The scanning tunneling microscopy break junction (STM-BJ) method is used to bridge tetrafluoroterephthalic acid (TFTPA) and terephthalic acid (TPA) molecules between the Au(111) electrode and the STM tip to measure the single-molecule conductance through the junction. When the Au(111) electrode is at negative potentials (with respect to the zero-charge potential), a highly ordered and flat-oriented superstructure forms, allowing for direct contact between the π system of the benzene ring of the molecules and the Au(111) electrode, leading to junction formation with no anchoring group involvement. Our first-principles nonequilibrium Green's function (NEGF) computation shows a flat configuration yields a conductance that is 3 orders of magnitude larger than for a molecule vertically connected to the electrodes via anchoring groups. Conductances of 0.24 ± 0.04 and 0.22 ± 0.02 G0 are experimentally measured with the flat configurations of TFTPA and TPA, respectively. These values are at least 2 orders of magnitude higher than the experimental values previously reported for the conductance of TPA bridged through carboxylic acid anchoring groups (3.8 × 10-4-3.2 × 10-3 G0). In contrast, a positively charged surface triggers an order-disorder transition eliminating the high-conductance states, most likely because the formation of the flat-oriented junction is prevented. The dependence of TFTPA conductance on the electrode potential (electrode Fermi level) suggests a LUMO mediated transport mechanism. Calculation confirms the lack of an effect of the addition of an electron-withdrawing group are investigated.

2.
Angew Chem Int Ed Engl ; 58(40): 14275-14280, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31237983

RESUMO

In most junctions built by wiring a single molecule between two electrodes, the electrons flow along only one axis: between the two anchoring groups. However, molecules can be anisotropic, and an orientation-dependent conductance is expected. Here, we fabricated single-molecule junctions by using the electrode potential to control the molecular orientation and access individual elements of the conductivity tensor. We measured the conductance in two directions, along the molecular plane as the benzene ring bridges two electrodes using anchoring groups (upright) and orthogonal to the molecular plane with the molecule lying flat on the substrate (planar). The perpendicular (planar) conductance is about 400 times higher than that along the molecular plane (upright). This offers a new method for designing a reversible room-temperature single-molecule electromechanical switch that controllably employs the electrode potential to orient the molecule in the junction in either "ON" or "OFF" conductance states.

4.
J Phys Chem B ; 127(45): 9771-9780, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37933172

RESUMO

The modulation of charge transport through single molecules can be established by using the intrinsic characteristics of molecules and the physical properties of their environment. Therefore, the impact of the solvent on the electronic properties of molecules in the junction and their charge transport behavior are of great interest. Here, for the first time, we focused on charge transport through dimethylaminobenzonitrile (DMABN). This molecule shows unique behavior, specifically noticeable electronic structure modulations in bulk solvents, e.g., dual fluorescence in a polar environment. Using the scanning tunneling microscopy break junction (STM-BJ) technique, we find an order of magnitude increase in conductance along with a second conductance value in polar solvents over nonpolar solvents. Inspired by the twisted intramolecular charge transfer (TICT) explanation of the famous dual fluorescence of DMABN in polar solvents, we hypothesize stabilization of twisted DMABN molecules in the junction in more polar solvents. Ab initio molecular dynamics (AIMD) simulations using density functional theory (DFT) show that DMABN can twist in the junction and have a larger dipole moment compared to planar DMABN junction geometries, supporting the hypothesis. The nonequilibrium Green's function with the DFT approach (NEGF-DFT) is used to calculate the conductance throughout the AIMD trajectory, finding a significant change in the frontier orbitals and transmission function at large internal twisting angles, which can explain the dual conductance in polar solvents in STM-BJ experiments.

5.
ACS Omega ; 7(46): 42146-42154, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440127

RESUMO

Recently discovered two-dimensional ferromagnetic materials (2DFMs) have rapidly gained much interest in the fields of spintronics and computing, where they may prove powerful tools for miniaturizing devices such as magnetic tunnel junctions and spin-transfer torque memory bits. In addition, heterojunctions and twisted bilayer stacks of such materials may yield exotic spin textures. However, preparation of such devices is complicated by the air sensitivity of many 2DFMs. Here, we report details on the preparation of few-to-monolayer flakes of vanadium selenide (VSe2) using electrochemical exfoliation in propylene carbonate. We also present a detailed study of the effects of air on the structure and magnetic properties of bare and passivated VSe2 after different concentrations of surface passivation treatment. We characterized the microstructure of holes in the VSe2 flakes and the formation of new compounds arising from air exposure, solvent exposure during the exfoliating process, and deliberate electron beam irradiation (sculpting). We sculpt VSe2 flakes while retaining the 1T-VSe2 lattice structure, opening the door for top-down patterned high-resolution 2DFM nanostructures. Additionally, investigation of the magnetic response of nanosheets using magnetic force microscopy (MFM) showed that the oxidation-induced damage only affects the surface fields locally and does not quench large-scale magnetic signal. The findings of this study pave the way toward practical incorporation of 2D ferromagnetic materials in nanoelectronics.

6.
ACS Nano ; 14(8): 10187-10197, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32692538

RESUMO

Computed tomography (CT) is an X-ray-based medical imaging technique commonly used for noninvasive gastrointestinal tract (GIT) imaging. Iodine- and barium-based CT contrast agents are used in the clinic for GIT imaging; however, inflammatory bowel disease (IBD) imaging is challenging since iodinated and barium-based CT agents are not specific for sites of inflammation. Cerium oxide nanoparticles (CeNP) can produce strong X-ray attenuation due to cerium's k-edge at 40.4 keV but have not yet been explored for CT imaging. In addition, we hypothesized that the use of dextran as a coating material on cerium oxide nanoparticles would encourage accumulation in IBD inflammation sites in a similar fashion to other inflammatory diseases. In this study, therefore, we sought to develop a CT contrast agent, i.e., dextran-coated cerium oxide nanoparticles (Dex-CeNP) for GIT imaging with IBD. We synthesized Dex-CeNP, characterized them using various analytical tools, and examined their in vitro biocompatibility, CT contrast generation, and protective effect against oxidative stress. In vivo CT imaging was done with both healthy mice and a dextran sodium sulfate induced colitis mouse model. Dex-CeNP's CT contrast generation and accumulation in inflammation sites were compared with iopamidol, an FDA approved CT contrast agent. Dex-CeNP was found to be protective against oxidative damage. Dex-CeNP produced strong CT contrast and accumulated in the colitis area of large intestines. In addition, >97% of oral doses were cleared from the body within 24 h. Therefore, Dex-CeNP can be used as a potential CT contrast agent for imaging GIT with IBD while protecting against oxidative damage.


Assuntos
Cério , Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Animais , Colite/induzido quimicamente , Colite/diagnóstico por imagem , Meios de Contraste , Dextranos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA