Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Leukemia ; 33(8): 2061-2077, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30705411

RESUMO

Acute leukemia is an aggressive blood malignancy with low survival rates. A high expression of stem-like programs in leukemias predicts poor prognosis and is assumed to act in an aberrant fashion in the phenotypically heterogeneous leukemia stem cell (LSC) population. A lack of suitable genome engineering tools that can isolate LSCs based on their stemness precludes their comprehensive examination and full characterization. We hypothesized that tagging endogenous stemness-regulatory regions could generate a genome reporter for the putative leukemia stemness-state. Our analysis revealed that the ERG + 85 enhancer region can serve as a marker for stemness-state and a fluorescent lentiviral reporter was developed that can accurately recapitulate the endogenous activity. Using our novel reporter, we revealed cellular heterogeneity in several leukemia cell lines and patient-derived samples. Alterations in reporter activity were associated with transcriptomic and functional changes that were closely related to the hematopoietic stem cell (HSC) identity. Notably, the differentiation potential was skewed towards the erythro-megakaryocytic lineage. Moreover, an ERG + 85High fraction of AML cells could regenerate the original cellular heterogeneity and was enriched for LSCs. RNA-seq analysis coupled with in silico drug-screen analysis identified 4HPR as an effective inhibitor of ERG + 85High leukemia growth. We propose that further utilization of our novel molecular tool will identify crucial determinants of LSCs, thus providing a rationale for their therapeutic targeting.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/fisiologia , Elementos Facilitadores Genéticos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Regulador Transcricional ERG/genética
2.
Cancer Res ; 79(15): 3862-3876, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175119

RESUMO

Acute leukemia is a rapidly progressing blood cancer with low survival rates. Unfavorable prognosis is attributed to insufficiently characterized subpopulations of leukemia stem cells (LSC) that drive chemoresistance and leukemia relapse. Here we utilized a genetic reporter that assesses stemness to enrich and functionally characterize LSCs. We observed heterogeneous activity of the ERG+85 enhancer-based fluorescent reporter in human leukemias. Cells with high reporter activity (tagBFPHigh) exhibited elevated expression of stemness and chemoresistance genes and demonstrated increased clonogenicity and resistance to chemo- and radiotherapy as compared with their tagBFPNeg counterparts. The tagBFPHigh fraction was capable of regenerating the original cellular heterogeneity and demonstrated increased invasive ability. Moreover, the tagBFPHigh fraction was enriched for leukemia-initiating cells in a xenograft assay. We identified the ubiquitin hydrolase USP9X as a novel ERG transcriptional target that sustains ERG+85-positive cells by controlling ERG ubiquitination. Therapeutic targeting of USP9X led to preferential inhibition of the ERG-dependent leukemias. Collectively, these results characterize human leukemia cell functional heterogeneity and suggest that targeting ERG via USP9X inhibition may be a potential treatment strategy in patients with leukemia. SIGNIFICANCE: This study couples a novel experimental tool with state-of-the-art approaches to delineate molecular mechanisms underlying stem cell-related characteristics in leukemia cells.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Oncogênicas/metabolismo , Regulador Transcricional ERG/metabolismo , Transplante Heterólogo/métodos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/mortalidade , Camundongos , Análise de Sobrevida , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA