Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 34(5): 971-989, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27095354

RESUMO

PURPOSE: This study investigated the effect of drug-excipient miscibility on the heterogeneity and spatial distribution of phase separation in pharmaceutical solid dispersions at a micron-scale using two novel and complementary characterization techniques, thermal analysis by structural characterization (TASC) and X-ray micro-computed tomography (XµCT) in conjunction with conventional characterization methods. METHOD: Complex dispersions containing felodipine, TPGS, PEG and PEO were prepared using hot melt extrusion-injection moulding. The phase separation behavior of the samples was characterized using TASC and XµCT in conjunction with conventional thermal, microscopic and spectroscopic techniques. The in vitro drug release study was performed to demonstrate the impact of phase separation on dissolution of the dispersions. RESULTS: The conventional characterization results indicated the phase separating nature of the carrier materials in the patches and the presence of crystalline drug in the patches with the highest drug loading (30% w/w). TASC and XµCT where used to provide insight into the spatial configuration of the separate phases. TASC enabled assessment of the increased heterogeneity of the dispersions with increasing the drug loading. XµCT allowed the visualization of the accumulation of phase separated (crystalline) drug clusters at the interface of air pockets in the patches with highest drug loading which led to poor dissolution performance. Semi-quantitative assessment of the phase separated drug clusters in the patches were attempted using XµCT. CONCLUSION: TASC and XµCT can provide unique information regarding the phase separation behavior of solid dispersions which can be closely associated with important product quality indicators such as heterogeneity and microstructure.


Assuntos
Excipientes/química , Preparações Farmacêuticas/química , Cristalização , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Felodipino/química , Polietilenoglicóis/química , Polímeros/química , Solubilidade , Vitamina E/química , Microtomografia por Raio-X/métodos
2.
Int J Pharm ; 526(1-2): 1-10, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28400289

RESUMO

Oral dosage forms are an integral part of modern health care and account for the majority of drug delivery systems. Traditionally the analysis of the dissolution behaviour of a dosage form is used as the key parameter to assess the performance of a drug product. However, understanding the mechanisms of disintegration is of critical importance to improve the quality of drug delivery systems. The disintegration performance is primarily impacted by the hydration and subsequent swelling of the powder compact. Here we compare liquid ingress and swelling data obtained using terahertz pulsed imaging (TPI) to a set of mathematical models. The interlink between hydration kinetics and swelling is described by a model based on Darcy's law and a modified swelling model based on that of Schott. Our new model includes the evolution of porosity, pore size and permeability as a function of hydration time. Results obtained from two sets of samples prepared from pure micro-crystalline cellulose (MCC) indicate a clear difference in hydration and swelling for samples of different porosities and particle sizes, which are captured by the model. Coupling a novel imaging technique, such as TPI, and mathematical models allows better understanding of hydration and swelling and eventually tablet disintegration.


Assuntos
Química Farmacêutica , Modelos Teóricos , Pós , Comprimidos , Sistemas de Liberação de Medicamentos , Excipientes , Porosidade , Solubilidade
3.
J Pharm Sci ; 104(5): 1658-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645509

RESUMO

Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations.


Assuntos
Química Farmacêutica/métodos , Pós/química , Imagem Terahertz/métodos , Difusão , Solubilidade , Comprimidos
4.
J Pharm Sci ; 104(10): 3440-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26073446

RESUMO

Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015.


Assuntos
Celulose/química , Algoritmos , Química Farmacêutica , Formas de Dosagem , Sistemas de Liberação de Medicamentos , Excipientes , Cinética , Modelos Teóricos , Porosidade , Solubilidade , Comprimidos , Temperatura
5.
J Pharm Sci ; 104(10): 3440-3450, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739040

RESUMO

Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA