Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Osteoarthritis Cartilage ; 18(7): 948-55, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20417291

RESUMO

OBJECTIVE: Statins possess anti-inflammatory properties. This study was undertaken to characterize the mechanism of action of statin drugs on collagenase expression in primary human osteoarthritic cartilage tissue. METHOD: Human articular chondrocytes and cartilage explants from osteoarthritic donors were exposed to simvastatin in the presence or absence of interleukin-1 beta (IL-1beta). Collagenase expression was determined by quantifying levels of matrix metalloproteinase 13 (MMP-13) and MMP-1 mRNA and MMP-13 protein. The mechanism of statin action was tested by addition of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) or by using inhibitors of farnesyl transferase (FT) and geranylgeranyl transferase (GGT-1). RESULTS: Treatment of osteoarthritic chondrocytes with simvastatin decreased mRNA levels of MMP-13 and MMP-1 whether under basal conditions or during stimulation with IL-1beta. MMP-13 protein secreted into the culture media was also decreased. Genes involved in cartilage synthesis (type II collagen and aggrecan) were not down-regulated by simvastatin. Exogenous addition of GGPP completely reversed the statin-mediated decrease in MMP-13 mRNA and protein levels whereas FPP partially reversed the statin-mediated effect. An inhibitor of GGT-1 mimicked the simvastatin-mediated reduction in MMP-13 expression by chondrocytes. Finally, consistent with impacts on MMP-13 and MMP-1 expression, simvastatin as well as the GGT-1 inhibitor both blocked type II collagen degradation in primary human articular cartilage explants. CONCLUSION: These results suggest that statins modulate chondrocyte metabolism by reducing prenylation of key signaling molecules that control the expression of collagen-degrading enzymes. Our results strongly support the hypothesis that protein prenyltransferases including geranylgeranyl transferase regulate chondrocyte collagenase expression in osteoarthritis.


Assuntos
Condrócitos/efeitos dos fármacos , Colagenases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Osteoartrite/metabolismo , Prenilação de Proteína/efeitos dos fármacos , Sinvastatina/farmacologia , Análise de Variância , Cartilagem Articular/efeitos dos fármacos , Células Cultivadas , Colagenases/genética , Humanos , Osteoartrite/genética , Prenilação de Proteína/genética
2.
Skelet Muscle ; 7(1): 16, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870238

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a progressive muscle disease caused by mutations that lead to epigenetic derepression and inappropriate transcription of the double homeobox 4 (DUX4) gene in skeletal muscle. Drugs that enhance the repression of DUX4 and prevent its expression in skeletal muscle cells therefore represent candidate therapies for FSHD. METHODS: We screened an aggregated chemical library enriched for compounds with epigenetic activities and the Pharmakon 1600 library composed of compounds that have reached clinical testing to identify molecules that decrease DUX4 expression as monitored by the levels of DUX4 target genes in FSHD patient-derived skeletal muscle cell cultures. RESULTS: Our screens identified several classes of molecules that include inhibitors of the bromodomain and extra-terminal (BET) family of proteins and agonists of the beta-2 adrenergic receptor. Further studies showed that compounds from these two classes suppress the expression of DUX4 messenger RNA (mRNA) by blocking the activity of bromodomain-containing protein 4 (BRD4) or by increasing cyclic adenosine monophosphate (cAMP) levels, respectively. CONCLUSIONS: These data uncover pathways involved in the regulation of DUX4 expression in somatic cells, provide potential candidate classes of compounds for FSHD therapeutic development, and create an important opportunity for mechanistic studies that may uncover additional therapeutic targets.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , AMP Cíclico/metabolismo , Ensaios de Triagem em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 2(4): 499-518, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28174730

RESUMO

BACKGROUND & AIMS: Pancreatic stellate cells (PSCs) regulate the development of chronic pancreatitis (CP) and are activated by the cytokine transforming growth factor ß (TGFB). Integrins of the αv family promote TGFB signaling in mice, probably by interacting with the Arg-Gly-Asp (RGD) sequence of the TGFB latency-associated peptide, which frees TGFB to bind its cellular receptors. However, little is known about the role of integrins in the development of CP. We investigated the effects of small-molecule integrin inhibitors in a mouse model of CP. METHODS: We induced CP in C57BL/6 female mice by repeated cerulein administration. An active RGD peptidomimetic compound (Center for World Health and Medicine [CWHM]-12) was delivered by continuous infusion, starting 3 days before or 5 days after cerulein administration began. Pancreata were collected and parenchymal atrophy, fibrosis, and activation of PSCs were assessed by histologic, gene, and protein expression analyses. We measured CWHM-12 effects on activation of TGFB in co-culture assays in which rat PSC cells (large T immortalized cells [LTC-14]) activate expression of a TGFB-sensitive promoter in reporter cells. RESULTS: Pancreatic tissues of mice expressed messenger RNAs encoding subunits of RGD-binding integrins. Cerulein administration increased expression of these integrins, altered pancreatic cell morphology, and induced fibrosis. The integrin inhibitor CWHM-12 decreased acinar cell atrophy and loss, and substantially reduced fibrosis, activation of PSCs, and expression of genes regulated by TGFB. CWHM-12 also reduced established fibrosis in mice and blocked activation of TGFB in cultured cells. CONCLUSIONS: Based on studies of a mouse model of CP and cultured PSCs, integrins that bind RGD sequences activate PSCs and promote the development of pancreatic fibrogenesis in mice. Small-molecule antagonists of this interaction might be developed for treatment of pancreatic fibrotic diseases.

4.
J Biomol Screen ; 16(2): 272-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21297110

RESUMO

To facilitate discovery of compounds modulating sphingosine-1-phosphate (S1P) signaling, the authors used high-throughput mass spectrometry technology to measure S1P formation in human whole blood. Since blood contains endogenous sphingosine (SPH) and S1P, mass spectrometry was chosen to detect the conversion of an exogenously added 17-carbon-long variant of sphingosine, C17SPH, into C17S1P. The authors developed procedures to achieve homogeneous mixing of whole blood in 384-well plates and for a method requiring minimal manipulations to extract S1P from blood in 96- and 384-well plates prior to analyses using the RapidFire(®) mass spectrometry system.


Assuntos
Inibidores Enzimáticos/sangue , Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Aminofenóis/metabolismo , Aminofenóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Lisofosfolipídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Tiazóis/metabolismo , Tiazóis/farmacologia
5.
Cartilage ; 1(1): 43-54, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26069535

RESUMO

Insulin-like growth factor binding protein 5 (IGFBP-5) has been proposed to promote cartilage anabolism through insulin-like growth factor (IGF-1) signaling. A proteolytic activity towards IGFBP-5 has been detected in synovial fluids from human osteoarthritic (OA) joints. The purpose of this study was to determine if protease activity towards IGFBP-5 is present in the rat medial meniscal tear (MMT) model of OA and whether inhibition of this activity would alter disease progression. Sprague-Dawley rats were subject to MMT surgery. Synovial fluid lavages were assessed for the presence of IGFBP-5 proteolytic activity. Treatment animals received intra-articular injections of vehicle or protease inhibitor peptide PB-145. Cartilage lesions were monitored by India ink staining followed by macroscopic measurement of lesion width and depth. The MMT surgery induced a proteolytic activity towards IGFPB-5 that was detectable in joint fluid. This activity was stimulated by calcium and was sensitive to serine protease inhibitors as well as peptide PB-145. Significantly, intra-articular administration of PB-145 after surgery protected cartilage from lesion development. PB-145 treatment also resulted in an increase in cartilage turnover as evidenced by increases in serum levels of procollagen type II C-propeptide (CPII) as well as synovial fluid lavage levels of collagen type II neoepitope (TIINE). IGFBP-5 metabolism is disrupted in the rat MMT model of OA, potentially contributing to cartilage degradation. Inhibition of IGFBP-5 proteolysis protected cartilage from lesion development and enhanced cartilage turnover. These data are consistent with IGFBP-5 playing a positive role in anabolic IGF signaling in cartilage.

6.
Arthritis Rheum ; 60(9): 2704-13, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19714641

RESUMO

OBJECTIVE: Fibronectin fragments are thought to play a critical role in the initiation and progression of cartilage degradation in arthritis. In a recent study, fibronectin neoepitopes resulting from cleavage of intact fibronectin at the Ala(271)/Val(272) scissile bond, generating an approximately 30-kd fragment with the new C-terminus VRAA(271) and an approximately 50-85-kd fragment with the new N-terminus (272)VYQP, were identified in osteoarthritis (OA) cartilage. The present study was undertaken to isolate the enzymes responsible for this cleavage from human OA chondrocytes. METHODS: Fibronectin-degrading activity in human OA chondrocyte-conditioned medium (OACCM) was purified using conventional chromatography. A fluorescent peptide was developed based on the fibronectin scissile bond (269)RAA downward arrowVal(272), and this peptide was used to track fibronectinase activity during purification. Western blotting with antibodies that detect the fibronectin neoepitopes VRAA(271) and (272)VYQP was used to confirm cleavage of intact fibronectin by the enzymatically active fractions. Mass spectrometry was used to identify the proteins found in the fibronectinase-enriched fractions, with further confirmation by Western blotting. In addition, a recombinant enzyme identified by mass spectrometry was tested by Western blotting and dimethylmethylene blue assay for its ability to produce fibronectin neoepitopes in OA cartilage. RESULTS: Purification of OACCM by chromatography resulted in isolation of a fibronectin-degrading enzyme, and mass spectrometry identified ADAM-8 as the fibronectinase present in these preparations. Furthermore, treatment of OA cartilage with recombinant human ADAM-8 promoted cartilage catabolism. CONCLUSION: The results of this study identify ADAM-8 as a fibronectinase in human OA chondrocytes. Because ADAM-8 is capable of producing the fibronectin neoepitopes VRAA(271) and (272)VYQP in human OA cartilage, this enzyme may be an important mediator of cartilage catabolism.


Assuntos
Proteínas ADAM/metabolismo , Proteínas ADAM/farmacologia , Alanina/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Fibronectinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Osteoartrite do Joelho/metabolismo , Idoso de 80 Anos ou mais , Células Cultivadas , Condrócitos/patologia , Meios de Cultivo Condicionados/farmacologia , Epitopos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA