Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L693-701, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24077945

RESUMO

T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3(ΔRGS)) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3(ΔRGS) mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3(ΔRGS) mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3(ΔRGS), demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3(ΔRGS) T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.


Assuntos
Movimento Celular , Inflamação/etiologia , Proteínas RGS/fisiologia , Mucosa Respiratória/imunologia , Linfócitos T/imunologia , Células Th2/imunologia , Animais , Apoptose , Western Blotting , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/patogenicidade , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Células Th2/metabolismo , Células Th2/patologia
2.
Am J Physiol Lung Cell Mol Physiol ; 301(5): L656-66, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21856814

RESUMO

Myofibroblast differentiation induced by transforming growth factor-ß (TGF-ß) and characterized by de novo expression of smooth muscle (SM)-specific proteins is a key process in wound healing and in the pathogenesis of fibrosis. We have previously shown that TGF-ß-induced expression and activation of serum response factor (SRF) is required for this process. In this study, we examined the signaling mechanism for SRF activation by TGF-ß as it relates to pulmonary myofibroblast differentiation. TGF-ß stimulated a profound, but delayed (18-24 h), activation of Rho kinase and formation of actin stress fibers, which paralleled SM α-actin expression. The translational inhibitor cycloheximide blocked these processes without affecting Smad-dependent gene transcription. Inhibition of Rho kinase by Y-27632 or depolymerization of actin by latrunculin B resulted in inhibition TGF-ß-induced SRF activation and SM α-actin expression, having no effect on Smad signaling. Conversely, stabilization of actin stress fibers by jasplakinolide was sufficient to drive these processes in the absence of TGF-ß. TGF-ß promoted a delayed nuclear accumulation of the SRF coactivator megakaryoblastic leukemia-1 (MKL1)/myocardin-related transcription factor-A, which was inhibited by latrunculin B. Furthermore, TGF-ß also induced MKL1 expression, which was inhibited by latrunculin B, by SRF inhibitor CCG-1423, or by SRF knockdown. Together, these data suggest a triphasic model for myofibroblast differentiation in response to TGF-ß that involves 1) initial Smad-dependent expression of intermediate signaling molecules driving Rho activation and stress fiber formation, 2) nuclear accumulation of MKL1 and activation of SRF as a result of actin polymerization, and 3) SRF-dependent expression of MKL1, driving further myofibroblast differentiation.


Assuntos
Pulmão/metabolismo , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar , Transdução de Sinais , Fibras de Estresse/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Actinas/genética , Actinas/metabolismo , Adenoviridae , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Luciferases/análise , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Cultura Primária de Células , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/patologia , Transativadores , Transdução Genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
3.
J Biol Chem ; 284(49): 33789-94, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19776005

RESUMO

The contractile phenotype of smooth muscle (SM) cells is controlled by serum response factor (SRF), which drives the expression of SM-specific genes including SM alpha-actin, SM22, and others. Myocardin is a cardiac and SM-restricted coactivator of SRF that is necessary for SM gene transcription. Growth factors inducing proliferation of SM cells inhibit SM gene transcription, in a manner dependent on the activation of extracellular signal-regulated kinases ERK1/2. In this study, we found that ERK1/2 phosphorylates mouse myocardin (isoform B) at four sites (Ser(812), Ser(859), Ser(866), and Thr(893)), all of which are located within the transactivation domain of myocardin. The single mutation of each site either to alanine or to aspartate has no effect on the ability of myocardin to activate SRF. However, the phosphomimetic mutation of all four sites to aspartate (4xD) significantly impairs activation of SRF by myocardin, whereas the phosphodeficient mutation of all four sites to alanine (4xA) has no effect. This translates to a reduced ability of the 4xD (but not of 4xA) mutant of myocardin to stimulate expression of SM alpha-actin and SM22, as assessed by corresponding promoter, mRNA, or protein assays. Furthermore, we found that phosphorylation of myocardin at these sites impairs its interaction with acetyltransferase, cAMP response element-binding protein-binding protein, which is known to promote the transcriptional activity of myocardin. In conclusion, we describe a novel mode of modulation of SM gene transcription by ERK1/2 through a direct phosphorylation of myocardin.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Ativação Enzimática , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , Homologia de Sequência de Aminoácidos , Transativadores/metabolismo
4.
Mol Pharmacol ; 73(5): 1356-61, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18287247

RESUMO

Regulator of G protein signaling (RGS) proteins are united into a family by the presence of the homologous RGS domain that binds the alpha subunits of heterotrimeric G proteins and accelerates their GTPase activity. A member of this family, RGS3 regulates the signaling mediated by G(q) and G(i) proteins by binding the corresponding Galpha subunits. Here we show that RGS3 interacts with the novel partners Smad2, Smad3, and Smad4-the transcription factors that are activated through a transforming growth factor-beta (TGF-beta) receptor signaling. This interaction is mediated by the region of RGS3 outside of the RGS domain and by Smad's Mad homology 2 domain. Overexpression of RGS3 results in inhibition of Smad-mediated gene transcription. RGS3 does not affect TGF-beta-induced Smad phosphorylation, but it prevents heteromerization of Smad3 with Smad4, which is required for transcriptional activity of Smads. This translates to functional inhibition of TGF-beta-induced myofibroblast differentiation by RGS3. In conclusion, this study identifies a novel, noncanonical role of RGS3 in regulation of TGF-beta signaling through its interaction with Smads and interfering with Smad heteromerization.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Smad/metabolismo , Transcrição Gênica , Actinas/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , DNA Complementar , Proteínas de Ligação ao GTP/química , Proteínas Ativadoras de GTPase/química , Humanos , Imunoprecipitação , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas RGS , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção , Fator de Crescimento Transformador beta/farmacologia
5.
Cell Signal ; 19(8): 1681-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17449226

RESUMO

Galpha12 and Galpha13 transduce signals from G protein-coupled receptors to RhoA through RhoGEFs containing an RGS homology (RH) domain, such as p115 RhoGEF or leukemia-associated RhoGEF (LARG). The RH domain of p115 RhoGEF or LARG binds with high affinity to active forms of Galpha12 and Galpha13 and confers specific GTPase-activating protein (GAP) activity, with faster GAP responses detected in Galpha13 than in Galpha12. At the same time, Galpha13, but not Galpha12, directly stimulates the RhoGEF activity of p115 RhoGEF or nonphosphorylated LARG in reconstitution assays. In order to better understand the molecular mechanism by which Galpha13 regulates RhoGEF activity through interaction with RH-RhoGEFs, we sought to identify the region(s) of Galpha13 involved in either the GAP response or RhoGEF activation. For this purpose, we generated chimeras between Galpha12 and Galpha13 subunits and characterized their biochemical activities. In both cell-based and reconstitution assays of RhoA activation, we found that replacing the carboxyl-terminal region of Galpha12 (residues 267-379) with that of Galpha13 (residues 264-377) conferred gain-of-function to the resulting chimeric subunit, Galpha12C13. The inverse chimera, Galpha13C12, exhibited basal RhoA activation which was similar to Galpha12. In contrast to GEF assays, GAP assays showed that Galpha12C13 or Galpha13C12 chimeras responded to the GAP activity of p115 RhoGEF or LARG in a manner similar to Galpha12 or Galpha13, respectively. We conclude from these results that the carboxyl-terminal region of Galpha13 (residues 264-377) is essential for its RhoGEF stimulating activity, whereas the amino-terminal alpha helical and switch regions of Galpha12 and Galpha13 are responsible for their differential GAP responses to the RH domain.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/química , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Baculoviridae/genética , Células HeLa , Humanos , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera/citologia , Spodoptera/metabolismo , Spodoptera/virologia , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Cardiovasc Res ; 74(2): 262-9, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17303098

RESUMO

OBJECTIVE: Smooth muscle alpha-actin (SMA) is a cytoskeletal protein characteristic to vascular smooth muscle cells (VSMC), and it serves to facilitate cell contraction and migration. Bacterial lipopolysaccharide (LPS), a major mediator of septic shock secondary to infection, is known to directly affect VSMC. The objective of this study was to investigate the effect of LPS on the expression levels of SMA in VSMC. METHODS: This study was performed on cultured VSMC derived from human aorta, human coronary artery, or rat aorta. RESULTS: We show that SMA expression in VSMC, induced by endothelin-1 (ET1) or transforming growth factor-beta (TGF-beta), is potently inhibited by a LPS. This parallels a decreased migration of VSMC after LPS treatment. Downregulation of SMA by LPS is not a result of altered signaling of ET1 or TGF-beta receptors, and it is not mediated by canonical (for LPS) mechanisms, such as production of prostaglandins or nitric oxide, or secretion of other endocrine factors. On a molecular level, downregulation of SMA expression by LPS occurs at the level of transcription, as both SMA mRNA levels and SMA promoter activity are inhibited by LPS. The SMA promoter is controlled largely by two major regulatory elements-CArG boxes activated by serum response factor (SRF), and TGF-beta control elements (TCE). LPS does not affect the activity of SRF, but it potently inhibits both basal and inducible TCE activation. CONCLUSION: We show for the first time that LPS attenuates SMA transcription and protein expression in VSMC likely through inhibition of a TCE element on the SMA promoter.


Assuntos
Actinas/metabolismo , Regulação para Baixo , Lipopolissacarídeos/farmacologia , Miócitos de Músculo Liso/metabolismo , Choque Séptico/metabolismo , Animais , Aorta , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Vasos Coronários , Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Ratos , Ratos Endogâmicos WKY , Choque Séptico/patologia , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
7.
J Interferon Cytokine Res ; 22(3): 311-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12034038

RESUMO

Type I interferons (IFNs) directly induce development of Th1 cells. However, IFN-alpha and IFN-beta should generate Th2 cells because these IFNs induce interleukin-10 (IL-10) and block secretion of IFN-gamma. We hypothesized that paradoxical effects of IFNs on Th1-mediated immunity could be from monocyte-specific and T cell-specific IL-10 regulation. We demonstrate that IFN-alpha and IFN-beta inhibit IL-10 mRNA and protein production by activated monocytes but stimulate IL-10 production by activated T cells from the same healthy donors. Without IFN-beta, Staphylococcus aureus, Cowan strain I (SAC)-activated monocytes secreted 15-fold more IL-10 than phorbol myristate acetate (PMA) anti-CD3-activated T cells. With IFN-beta, the two subsets had nearly equivalent secretion. Prostaglandin (PGE) and other cAMP agonists had subset-specific effects on IL-10 production opposite to IFN-beta. The differential IFN-beta effect on transcriptional regulation of IL-10 in monocytes and T cells was from lineage-specific modification of RNA stability. IFN-beta decreased the half-life of IL-10 mRNA in activated monocytes but prolonged the half-life in activated T cells. Subset-specific IL-10 regulation has important implications for Th1-mediated disease. When activated macrophages and microglia are in excess, as in rheumatoid joints or possibly in chronic multiple sclerosis brain lesions, IFNs may inhibit overall IL-10 production and worsen disease. When T cells outnumber monocytes, IFN-beta will induce IL-10 and ameliorate Th1-mediated disease.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interferon Tipo I/farmacologia , Interleucina-10/biossíntese , Ativação Linfocitária , Monócitos/imunologia , Linfócitos T/imunologia , Células Cultivadas , Humanos , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Interleucina-10/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/genética , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
8.
Cell Signal ; 22(9): 1274-81, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20363320

RESUMO

Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.


Assuntos
Proteínas RGS/fisiologia , Transdução de Sinais , Núcleo Celular/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas RGS/análise
9.
Am J Physiol Cell Physiol ; 294(5): C1169-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18353896

RESUMO

Extracellular ATP stimulates proliferation of vascular smooth muscle cells (VSMC) through activation of G protein-coupled P2Y purinergic receptors. We have previously shown that ATP stimulates a transient activation of protein kinase A (PKA), which, together with the established mitogenic signaling of purinergic receptors, promotes proliferation of VSMC (Hogarth DK, Sandbo N, Taurin S, Kolenko V, Miano JM, Dulin NO. Am J Physiol Cell Physiol 287: C449-C456, 2004). We also have shown that PKA can phosphorylate beta-catenin at two novel sites (Ser552 and Ser675) in vitro and in overexpression cell models (Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. J Biol Chem 281: 9971-9976, 2006). beta-Catenin promotes cell proliferation by activation of a family of T-cell factor (TCF) transcription factors, which drive the transcription of genes implicated in cell cycle progression including cyclin D1. In the present study, using the phosphospecific antibodies against phospho-Ser552 or phospho-Ser675 sites of beta-catenin, we show that ATP can stimulate PKA-dependent phosphorylation of endogenous beta-catenin at both of these sites without affecting its expression levels in VSMC. This translates to a PKA-dependent stimulation of TCF transcriptional activity through an increased association of phosphorylated (by PKA) beta-catenin with TCF-4. Using the PKA inhibitor PKI or dominant negative TCF-4 mutant, we show that ATP-induced cyclin D1 promoter activation, cyclin D1 protein expression, and proliferation of VSMC are all dependent on PKA and TCF activities. In conclusion, we show a novel mode of regulation of endogenous beta-catenin through its phosphorylation by PKA, and we demonstrate the importance of this mechanism for ATP-induced proliferation of VSMC.


Assuntos
Trifosfato de Adenosina/farmacologia , Divisão Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , beta Catenina/metabolismo , Animais , Aorta , DNA Complementar/genética , Fosforilação , Ratos , Ratos Endogâmicos WKY , beta Catenina/genética
10.
J Biol Chem ; 282(27): 19518-25, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17513863

RESUMO

Endothelin-1 (ET1) is a vasoactive peptide that stimulates hypertrophy of vascular smooth muscle cells (VSMC) through diverse signaling pathways mediated by G(q)/G(i)/G(13) heterotrimeric G proteins. We have found that ET1 stimulates the activity of cAMP-dependent protein kinase (PKA) in VSMC as profoundly as the G(s)-linked beta-adrenergic agonist, isoproterenol (ISO), but in a transient manner. PKA activation by ET1 was mediated by type-A ET1 receptors (ETA) and recruited an autocrine signaling mechanism distinct from that of ISO, involving G(i)-coupled betagamma subunits of heterotrimeric G proteins, extracellular signal-regulated kinases ERK1/2, cyclooxygenase COX-1 (but not COX-2) and prostacyclin receptors. In the functional studies, inhibition of PKA or COX-1 attenuated ET1-induced VSMC hypertrophy, suggesting the positive role of PKA in this response to ET1. Furthermore, we found that ET1 stimulates a Gbetagamma-mediated, PKA-dependent phosphorylation and inactivation of glycogen synthase kinase-3 (GSK3), an enzyme that regulates cell growth. Together, this study describes that (i) PKA can be transiently activated by G(i)-coupled agonists such as ET1 by an autocrine mechanism involving Gbetagamma/calcium/ERK/COX-1/prostacyclin signaling, and (ii) this PKA activation promotes VSMC hypertrophy, at least in part, through PKA-dependent phosphorylation and inhibition of GSK3.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endotelina-1/farmacologia , Epoprostenol/biossíntese , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Músculo Liso Vascular/enzimologia , Vasoconstritores/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Endotelina-1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Quinase 3 da Glicogênio Sintase/genética , Hipertrofia/enzimologia , Hipertrofia/genética , Hipertrofia/patologia , Isoproterenol/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Vasoconstritores/metabolismo
11.
Biochemistry ; 45(1): 167-74, 2006 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16388592

RESUMO

The oncogenic G(12/13) subfamily of heterotrimeric G proteins transduces extracellular signals that regulate the actin cytoskeleton, cell cycle progression, and gene transcription. Previously, structural analyses of fully functional G alpha(12/13) subunits have been hindered by insufficient amounts of homogeneous, functional protein. Herein, we report that substitution of the N-terminal helix of G alpha(i1) for the corresponding region of G alpha12 or G alpha13 generated soluble chimeric subunits (G alpha(i/12) and G alpha(i/13)) that could be purified in sufficient amounts for crystallographic studies. Each chimera bound guanine nucleotides, G betagamma subunits, and effector proteins and exhibited GAP responses to p115RhoGEF and leukemia-associated RhoGEF. Like their wild-type counterparts, G alpha(i/13), but not G alpha(i/12), stimulated the activity of p115RhoGEF. Crystal structures of the G alpha(i/12) x GDP x AlF4(-) and G alpha(i/13) x GDP complexes were determined using diffraction data extending to 2.9 and 2.0 A, respectively. These structures reveal not only the native structural features of G alpha12 and G alpha13 subunits, which are expected to be important for their interactions with GPCRs and effectors such as G alpha-regulated RhoGEFs, but also novel conformational changes that are likely coupled to GTP hydrolysis in the G alpha(12/13) class of heterotrimeric G proteins.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Quimera/genética , Quimera/metabolismo , Cristalografia por Raios X , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/isolamento & purificação , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Nucleotídeos de Guanina/química , Nucleotídeos de Guanina/genética , Nucleotídeos de Guanina/metabolismo , Leucemia/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho
12.
Proc Natl Acad Sci U S A ; 100(25): 14748-53, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14657363

RESUMO

G alpha 12/13-mediated pathways have been shown to be involved in various fundamental cellular functions in mammalian cells such as axonal guidance, apoptosis, and chemotaxis. Here, we identified a homologue of Rho-guanine nucleotide exchange factor (GEF) in Caenorhabditis elegans (CeRhoGEF), which functions downstream of gpa-12, the C. elegans homologue of G alpha 12/13. CeRhoGEF contains a PSD-95/Dlg/ZO-1 domain and a regulator of G protein signaling (RGS) domain upstream of the Dbl homology-pleckstrin homology region similar to mammalian RhoGEFs with RGS domains, PSD-95/Dlg/ZO-1-RhoGEF and leukemia-associated RhoGEF. It has been shown in mammalian cells that these RhoGEFs interact with activated forms of G alpha 12 or G alpha 13 through their RGS domains. We demonstrated by coimmunoprecipitation that the RGS domain of CeRhoGEF interacts with GPA-12 in an AIF4- activation-dependent manner and confirmed that the Dbl homology-pleckstrin homology domain of CeRhoGEF was capable of Rho-dependent signaling. These results proved conservation of the G alpha 12-RhoGEF pathway in C. elegans. Expression of DsRed or GFP under the control of the promoter of CeRhoGEF or gpa-12 revealed an overlap of their expression patterns in ventral cord motor neurons and several neurons in the head. RNA-mediated gene interference for CeRhoGEF and gpa-12 resulted in similar phenotypes such as embryonic lethality and sensory and locomotive defects in adults. Thus, the G alpha 12/13-RhoGEF pathway is likely to be involved in embryonic development and neuronal function in C. elegans.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Alergia e Imunologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Células COS , Caenorhabditis elegans , Clonagem Molecular , DNA Complementar/metabolismo , Drosophila , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde , Fatores de Troca do Nucleotídeo Guanina/química , Luciferases/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/farmacologia , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas RGS , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA