Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(50): e202315621, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37902435

RESUMO

Electrochemical CO2 reduction reaction (CO2 RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2 H4 ). However, achieving high C2 H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2 RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2 H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2 H4 with a current density of 497.2 mA cm-2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4 . The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2 RR. Furthermore, theoretical calculations demonstrate that the Cuδ+ /Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2 H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.

2.
Anal Chim Acta ; 1034: 144-152, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30193628

RESUMO

In our study, the carbon nanodots (CDs) were synthesized by one-step solvothermal method using resorcinol as the only presusor. The obtained CDs contained abundant unsaturated oxygen-containing groups resulting from the surface oxidation. A novel, simple, and real-time fluorescent assay for the detection of water in various organic solvents was thus established by reducing the surface oxidation states. Excellent reversibility can be readily achieved by the external stimulus water and N,N'-dicyclohexylcarbodiimide (DCC). The water-induced sensitive (limit of detection = 0.006%, v/v, in ethanol) and ultrafast (<1 s) response in emission properties was capable of water determination in spirit samples in both solution and solid-state paper test strips.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA