Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(50): 18479-18486, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38054623

RESUMO

We demonstrate for the first time the measurement of CO2 isotope ratios (13C/12C and 18O/16O) in a hollow waveguide (HWG) fiber using a mid-infrared heterodyne phase-sensitive dispersion spectrometer (HPSDS). A 4.329 µm interband cascade laser is used to target the absorption lines of three CO2 isotopes (13C16O2, 18O12C16O, and 12C16O2) in a 1 m long and 1 mm inner diameter HWG fiber. The detection limits are 0.29 ppm, 65.78 ppb, and 14.65 ppm with an integration time of 218 s for 13C16O2, 18O12C16O, and 12C16O2, respectively, at a modulation frequency of 160 MHz and a pressure of 230 mbar. The measurement precisions of δ13C and δ18O are 0.89 and 0.88 ‰, respectively, corresponding to an integration time of 167 s. An experimental comparison between a HPSDS and a built wavelength modulation system with second-harmonic detection (WMS-2f) is conducted. The results show that compared to the WMS-2f, the developed HPSDS exhibits a greater linear dynamic range and excellent long-term stability. This work aims to demonstrate a detection technique of CO2 isotope dispersion spectroscopy with a large dynamic range for relevant applications focusing on samples with high concentrations of CO2 (% volume fraction), such as respiratory analysis in medical diagnostics.

2.
Opt Express ; 31(15): 25070-25081, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475320

RESUMO

Heterodyne phase-sensitive dispersion spectrometer (HPSDS) retrieves the concentration of gas samples by measuring the refractive index fluctuations near the molecular resonance. Compared to previous HPSDS studies focusing on pure intensity modulation, it is attractive to investigate the performance of HPSDS sensor based on a distributed feedback (DFB) laser under conditions where frequency modulation is much higher than intensity modulation. In this work, we report the implementation of a near-infrared HPSDS for methane detection based on the direct modulation of a DFB laser. The performance of our HPSDS is assessed using the characteristic absorption peak of methane near 1653.7 nm. Long-time measurements show that our HPSDS has a detection limit (MDL) of 1.22 ppm at standard atmospheric pressure and room temperature. In the same experimental conditions, we have experimentally compared HPSDS to wavelength modulation spectroscopy (WMS) to evaluate the dynamical range, long-term stability, and precision limits of the two methods.

3.
Opt Lett ; 48(22): 5931-5934, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966755

RESUMO

A novel, to the best of our knowledge, Rayleigh-Brillouin scattering (RBS) spectrometer based on a virtually imaged phased array (VIPA) with a high spectral resolution is proposed for rapid gas temperature detection. CO2 RBS spectra at gas pressure of 0.5-4 bar were acquired with a spectrum acquisition time of 10 s, and temperature inversion analysis was performed using TENTI S6 model. The root-mean-square error (RMSE) of the RBS profile fitting is less than 2.95%, and the maximum absolute error of temperature inversion is less than 2.45 K. Compared with traditional methods, this method has low RBS signal loss and short acquisition time without the frequency scanning process, which is more conducive to real-time detection applications.

4.
Anal Chem ; 93(46): 15468-15473, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34766749

RESUMO

A laser frequency-locked hollow waveguide (HWG) gas sensor is demonstrated for simultaneous measurements of three isotopologues (12CO2, 13CO2, and 18OC16O) using wavelength modulation spectroscopy with a 2.73 µm distributed feedback laser. The first harmonic (1f) signal at the sampling point where the peak of the second harmonic (2f) signal was located was employed as the locking point to lock the laser frequency to the transition center of 13CO2, while the absorption lines of 12CO2 and 18OC16O were being scanned. Continuous measurements of the three isotopologues of 4.7% CO2 samples over 103 min under free running and frequency locking conditions were performed. The measurement accuracy and precision of the three isotopologues achieved under the frequency locking condition were at least 3 times and 1.3 times better than those obtained under the free running condition, respectively. The Allan variance plot of the developed laser-locked HWG gas sensor shows a detection limit of 0.72‰ for both δ13C and δ18O under the frequency locking condition with a long stability time of 766 s. This study demonstrated the high potential of a novel human breath diagnostic sensor for medical diagnostic with high accuracy, precision, and sensitivity and without frequently repeated calibration.


Assuntos
Dióxido de Carbono , Lasers , Humanos , Análise Espectral
5.
Anal Chem ; 92(19): 12943-12949, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32864957

RESUMO

Real-time measuring of CO2 isotopes (13CO2, 12CO2, and 18OC16O) in exhaled breath using a mid-infrared hollow waveguide gas sensor incorporating a 2.73 µm distributed feedback laser was proposed and demonstrated for the first time based on calibration-free wavelength modulation spectroscopy. The measurement precisions for δ13C and δ18O were, respectively, 0.26 and 0.57‰ for an integration time of 131 s by Allan variance analysis. These measurement precisions achieved in the present work were at least 3.5 times better than those reported using direct absorption spectroscopy and 1.3 times better than those obtained by calibration-needed wavelength modulation absorption spectroscopy. Continuous measurement of three isotopes in the breathing cycle was performed. Alveolar gas from the expirogram was identified, and the 13C/12C and 18O/16O ratios were found to be almost constant during the alveolar plateau, which enables optimization of breath sampling and provides accurate information on metabolic processes. The 13C/12C and 18O/16O isotope ratios at the alveolar plateau of five breath cycles were averaged, yielding δ13C and δ18O values of (-24.3 ± 3.4) and (-30.7 ± 2.6) ‰, respectively. This study demonstrates the feasibility of real-time analysis of 13C- and 18O-isotopes of human breath CO2 in clinical applications and shows its potential for diagnosing respiratory-related diseases with high sensitivity, selectivity, and specificity.


Assuntos
Testes Respiratórios , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Cromatografia Gasosa , Humanos , Lasers , Isótopos de Oxigênio , Porosidade , Fatores de Tempo
6.
Opt Express ; 28(8): 10970-10980, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403618

RESUMO

A hollow waveguide (HWG) based mid-infrared gas sensor using a 2.73 µm distributed feedback (DFB) laser was developed for simultaneously measuring the concentration changes of the three isotopologues 13CO2, 12CO2, and 18OC16O in exhaled breath by direct absorption spectroscopy, and then determining the 13CO2/12CO2 isotope ratio (δ13C) and 18OC16O/12CO2 isotope ratio (δ18O). The HWG sensor showed a fast response time of 3 s. Continuous measurement of δ13C and δ18O in the standard CO2 sample with known isotopic ratios for ∼2 h was performed. Precisions of 2.20‰ and 1.98‰ for δ13C and δ18O respectively at optimal integration time of 734 s were estimated from Allan variance analysis. Accuracy of -0.49‰ and -1.20‰ for δ13C and δ18O, respectively, were obtained with comparison to the values of the reference standard. The Kalman filtering method was employed to improve the precision and accuracy of the HWG sensor while maintaining high time resolution. Precision of 5.45‰ and 4.88‰ and the accuracy of 0.21‰ and -1.13‰ for δ13C and δ18O, respectively, were obtained at the integration time of 0.54 s with the application of Kalman filtering. The concentrations of 12CO2, 13CO2 and 18OC16O in breath cycles were measured and processed by Kalman filtering in real time. The measured values of δ18O and δ13C in exhaled breath were estimated to be -21.35‰ and -33.64‰, respectively, with the integration time of 1 s. This study demonstrates the ability of the HWG sensor to obtain δ13C and δ18O values in breath samples and its potential for immediate respiratory monitoring and disease diagnosis.


Assuntos
Testes Respiratórios/métodos , Dióxido de Carbono/análise , Lasers , Espectrometria de Massas/métodos , Isótopos de Carbono/análise , Expiração , Humanos , Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA