Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Chem Soc Rev ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253782

RESUMO

Aqueous zinc-ion batteries (AZIBs) have garnered significant attention in the realm of large-scale and sustainable energy storage, primarily owing to their high safety, low cost, and eco-friendliness. Aqueous electrolytes, serving as an indispensable constituent, exert a direct influence on the electrochemical performance and longevity of AZIBs. Nonetheless, conventional aqueous electrolytes often encounter formidable challenges in AZIB applications, such as the limited electrochemical stability window and the zinc dendrite growth. In response to these hurdles, a series of advanced aqueous electrolytes have been proposed, such as "water-in-salt" electrolytes, aqueous eutectic electrolytes, molecular crowding electrolytes, and hydrogel electrolytes. This comprehensive review commences by presenting an in-depth overview of the fundamental compositions, principles, and distinctive characteristics of various advanced aqueous electrolytes for AZIBs. Subsequently, we systematically scrutinizes the recent research progress achieved with these advanced aqueous electrolytes. Furthermore, we summarizes the challenges and bottlenecks associated with these advanced aqueous electrolytes, along with offering recommendations. Based on the optimization of advanced aqueous electrolytes, this review outlines future directions and potential strategies for the development of high-performance AZIBs. This review is anticipated to provide valuable insights into the development of advanced electrolyte systems for the next generation of stable and sustainable multi-valent secondary batteries.

2.
Small ; 20(20): e2306521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366268

RESUMO

Metal-organic frameworks (MOFs) are high-performance adsorbents for atmospheric water harvesting but have poor water-desorption ability, requiring excess energy input to release the trapped water. Addressing this issue, a Janus-structured adsorbent with functional asymmetry is presented. The material exhibits contrasting functionalities on either face - a hygroscopic face interfaced with a photothermal face. Hygroscopic aluminum fumarate MOF and photothermal CuxS layers are in-situ grown on opposite sides of a Cu/Al bimetallic substrate, resulting in a CuxS-Cu/Al-MOF Janus hygro-photothermal hybrid. The two faces serve as independent "factories" for photothermal conversion and water adsorption-desorption respectively, while the interfacing bimetallic layer serves as a "heat conveyor belt" between them. Due to the high porosity and hydrophilicity of the MOF, the hybrid exhibits a water-adsorption capacity of 0.161 g g-1 and a fast adsorption rate (saturation within 52 min) at 30% relative humidity. Thanks to the photothermal CuxS, the hybrid can reach 71.5 °C under 1 Sun in 20 min and desorb 97% adsorbed water in 40 min, exhibiting a high photothermal conversion efficiency of over 90%. CuxS-Cu/Al-MOF exhibits minimal fluctuations after 200 cycles, and its water-generation capacity is 3.21 times that of powdery MOF in 3 h in a self-designed prototype in one cycle.

3.
Nano Lett ; 23(2): 597-605, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36622320

RESUMO

The development of high-performance miniaturized and flexible airflow sensors is essential to meet the need of emerging applications. Graphene-based airflow sensors are hampered by the sluggish response and recovery speed and low sensitivity. Here we employ laser-induced graphene (LIG) with poststructural biomimicry for fabricating high-performance, flexible airflow sensors, including cotton-like porous LIG, caterpillar fluff-like vertical LIG fiber, and Lepidoptera scale-like suspended LIG fiber (SLIGF) structures. The structural engineering changes the deformation behavior of LIGs under stress, among which the synchronous propagation of the scale-like structure of SLIGF is the most conducive to airflow sensing. The SLIGF achieves the shortest average response time of 0.5 s, the highest sensitivity of 0.11 s/m, and a record-low detection threshold of 0.0023 m/s, benchmarked against the state-of-the-art airflow sensors. Furthermore, we showcase the SLIGF airflow sensors in weather forecasting, health, and communications applications. Our study will help develop next-generation waterflow, sound, and motion sensors.

4.
Angew Chem Int Ed Engl ; 63(15): e202400414, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348904

RESUMO

Bipolar membranes (BPMs) have emerged as a promising solution for mitigating CO2 losses, salt precipitation and high maintenance costs associated with the commonly used anion-exchange membrane electrode assembly for CO2 reduction reaction (CO2RR). However, the industrial implementation of BPM-based zero-gap electrolyzer is hampered by the poor CO2RR performance, largely attributed to the local acidic environment. Here, we report a backbone engineering strategy to improve the CO2RR performance of molecular catalysts in BPM-based zero-gap electrolyzers by covalently grafting cobalt tetraaminophthalocyanine onto a positively charged polyfluorene backbone (PF-CoTAPc). PF-CoTAPc shows a high acid tolerance in BPM electrode assembly (BPMEA), achieving a high FE of 82.6 % for CO at 100 mA/cm2 and a high CO2 utilization efficiency of 87.8 %. Notably, the CO2RR selectivity, carbon utilization efficiency and long-term stability of PF-CoTAPc in BPMEA outperform reported BPM systems. We attribute the enhancement to the stable cationic shield in the double layer and suppression of proton migration, ultimately inhibiting the undesired hydrogen evolution and improving the CO2RR selectivity. Techno-economic analysis shows the least energy consumption (957 kJ/mol) for the PF-CoTAPc catalyst in BPMEA. Our findings provide a viable strategy for designing efficient CO2RR catalysts in acidic environments.

5.
Nano Lett ; 22(13): 5538-5543, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766622

RESUMO

Ferrofluids (FFs) can adapt their shape to a magnetic field. However, they cannot maintain their shape when the magnetic field is removed. Here, with a magneto-responsive and reconfigurable interfacial self-assembly (MRRIS) process, we show that FFs can be structured by a magnetic field and maintain their shape, like solids, after removing the magnetic field. The competing self-assembly of magnetic and nonmagnetic nanoparticles at the liquid interface endow FFs with both reconfigurability and structural stability. By manipulating the external magnetic field, we show that it is possible to "write" and "erase" the shape of the FFs remotely and repeatedly. To gain an in-depth understanding of the effect of MRRIS on the structure of FFs, we systematically study the shape variation of these liquids under both the static and dynamic magnetic fields. Our study provides a simple yet novel way of manipulating FFs and opens opportunities for the fabrication of all-liquid devices.


Assuntos
Coloides , Nanopartículas , Coloides/química , Campos Magnéticos , Magnetismo , Nanopartículas/química
6.
Nano Lett ; 22(8): 3447-3456, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35411774

RESUMO

Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 µW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Nanopartículas Metálicas , Animais , Eletrodos , Ouro , Lasers , Ratos
7.
Angew Chem Int Ed Engl ; 62(23): e202302583, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37000437

RESUMO

Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0 ) electrodes. Contrary to conventional "bulk solvation" mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx /ZnSx and outer organic C-O-C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm-2 at areal-capacity of 10 mAh cm-2 . More importantly, a 2.3 Ah Zn||Zn0.25 V2 O5 ⋅n H2 O pouch cell delivers a recorded energy density of 104 Wh Lcell -1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah-1 ), and high-areal-capacity (≈13 mAh cm-2 ).

8.
Small ; 18(47): e2204010, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36251777

RESUMO

The on-chip electrocatalytic microdevice (OCEM) is an emerging platform specialized in the electrochemical investigation of single-entity nanomaterials, which is ideal for probing the intrinsic catalytic properties, optimizing performance, and exploring exotic mechanisms. However, the current catalytic applications of OCEMs are almost exclusively in electrocatalytic hydrogen/oxygen evolution reactions with minimized influence from the mass transfer. Here, an OCEM platform specially tailored to investigate the electrocatalytic oxygen reduction reaction (ORR) at a microscopic level by introducing electrolyte convection through a microfluidic flow cell is reported. The setup is established on gold microelectrodes and later successfully applied to investigate how Ar-plasma treatment affects the ORR activities of 2H MoS2 . This study finds that Ar-plasma treatment significantly enhances the ORR performance of MoS2 nanosheets owing to the introduction of surface defects. This study paves the way for highly efficient microscopic investigation of diffusion-controlled electrocatalytic reactions.


Assuntos
Molibdênio , Nanoestruturas , Molibdênio/química , Catálise , Nanoestruturas/química , Ouro/química , Oxigênio/química
9.
Small ; 18(26): e2201076, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638469

RESUMO

The oxygen evolution reaction (OER) is crucial to electrochemical hydrogen production. However, designing and fabricating efficient electrocatalysts still remains challenging. By confinedly coordinating organic ligands with metal species in layered double hydroxides (LDHs), an innovative LDHs-assisted approach is developed to facilely synthesize freestanding bimetallic 2D metal-organic framework nanosheets (2D MOF NSs), preserving the metallic components and activities in OER. Furthermore, the research has demonstrated that the incorporation of carboxyl organic ligands coordinated with metal atoms as proton transfer mediators endow 2D MOF NSs with efficient proton transfer during the electrochemical OHads  â†’ Oads transition. These freestanding NiFe-2D MOF NSs require a small overpotential of 260 mV for a current density of 10 mA cm-2 . When this strategy is applied to LDH nanosheets grown on nickel foam, the overpotential can be reduced to 221 mV. This outstanding OER activity supports the capability of multimetallic organic frameworks for the rational design of water oxidation electrocatalysts. This strategy provides a universal path to the synthesis of 2D MOF NSs that can be used as electrocatalysts directly.

10.
Small ; 18(24): e2201311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35561067

RESUMO

Deficiencies in understanding the local environment of active sites and limited synthetic skills challenge the delivery of industrially-relevant current densities with low overpotentials and high selectivity for CO2 reduction. Here, a transient laser induction of metal salts can stimulate extreme conditions and rapid kinetics to produce defect-rich indium nanoparticles (L-In) is reported. Atomic-resolution microscopy and X-ray absorption disclose the highly defective and undercoordinated local environment in L-In. In a flow cell, L-In shows a very small onset overpotential of ≈92 mV and delivers a current density of ≈360 mA cm-2 with a formate Faradaic efficiency of 98% at a low potential of -0.62 V versus RHE. The formation rate of formate reaches up to 6364.4 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ , which is nearly 39 folds higher than that of commercial In (160.7 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ ), outperforming most of the previous results that have been reported under KHCO3 environments. Density function theory calculations suggest that the defects facilitate the formation of *OCHO intermediate and stabilize the *HCOOH while inhibiting hydrogen adsorption. This study suggests that transient solid-state laser induction provides a facile and cost-effective approach to form ligand-free and defect-rich materials with tailored activities.


Assuntos
Índio , Lasers de Estado Sólido , Dióxido de Carbono/química , Formiatos/química
11.
Angew Chem Int Ed Engl ; 61(30): e202204604, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543996

RESUMO

Nonradiative decay invariably competes with radiative decay during the deexcitation process of matter. In the community of luminescence research, nonradiative decay has been deemed less attractive than radiative decay. However, all things in their being are good for something and so is nonradiative decay. As the molecular motion-facilitated nonradiative decay (MMFND) effect is inevitable in photophysical processes, it provides a new avenue to convert the harvested light energy into exploitable forms by harnessing molecular motion. In many cases, active molecular motion enables thermal deactivation from excited states. In this Minireview, recent advances in photothermal and photoacoustic systems with MMFND character are summarized. We believe that this presentation of the rational engineering of molecular motion for efficient photothermal generation will deepen the understanding of the relationship between molecular motion and nonradiative decay and navigate people to rethink the positive aspects of nonradiative decay for the establishment of new light-controllable techniques.


Assuntos
Luminescência , Técnicas Fotoacústicas , Humanos , Análise Espectral
12.
Adv Funct Mater ; 31(24): 2101195, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34149339

RESUMO

The prevalence of COVID-19 has caused global dysfunction in terms of public health, sustainability, and socio-economy. While vaccination shows potential in containing the spread, the development of surfaces that effectively reduces virus transmission and infectivity is also imperative, especially amid the early stage of the pandemic. However, most virucidal surfaces are operated under harsh conditions, making them impractical or potentially unsafe for long-term use. Here, it is reported that laser-induced graphene (LIG) without any metal additives shows marvelous antiviral capacities for coronavirus. Under low solar irradiation, the virucidal efficacy of the hydrophobic LIG (HLIG) against HCoV-OC43 and HCoV-229E can achieve 97.5% and 95%, respectively. The photothermal effect and the hydrophobicity of the HLIG synergistically contribute to the superior inactivation capacity. The stable antiviral performance of HLIG enables its multiple uses, showing advantages in energy saving and environmental protection. This work discloses a potential method for antiviral applications and has implications for the future development of antiviral materials.

13.
Small ; 17(51): e2102841, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672086

RESUMO

Worldwide, countless deaths have been caused by the coronavirus disease 2019. In addition to the virus variants, an increasing number of fatal fungal infections have been reported, which further exacerbates the scenario. Therefore, the development of porous surfaces with both antiviral and antimicrobial capacities is of urgent need. Here, a cost-effective, nontoxic, and metal-free strategy is reported for the surface engineering of laser-induced graphene (LIG). The authors covalently engineer the surface potential of the LIG from -14 to ≈+35 mV (LIG+ ), enabling both high-efficiency antimicrobial and antiviral performance under mild conditions. Specifically, several candidate microorganisms of different types, including Escherichia coli, Streptomyces tenebrarius, and Candida albicans, are almost completely inactivated after 10-min solar irradiation. LIG+ also exhibits a strong antiviral effect against human coronaviruses: 99% HCoV-OC43 and 100% HCoV-229E inactivation are achieved after 20-min treatment. Such enhancement may also be observed against other types of pathogens that are heat-sensitive and oppositely charged. Besides, the covalent modification strategy alleviates the leaching problem, and the low cytotoxicity of LIG+ makes it advantageous. This study highlights the synergy of surface potential and photothermal effect in the inactivation of pathogens and it provides a direction for designing porous materials for airborne disease removal and water disinfection.


Assuntos
Anti-Infecciosos , COVID-19 , Grafite , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Humanos , Lasers , SARS-CoV-2
14.
J Am Chem Soc ; 141(14): 5612-5616, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30920831

RESUMO

Although photodynamic therapy (PDT) has thrived as a promising treatment, highly active photosensitizers (PSs) and intense light power can cause treatment overdose. However, extra therapeutic response probes make the monitoring process complicated, ex situ and delayed. Now, this challenge is addressed by a self-reporting cationic PS, named TPE-4EP+, with aggregation-induced emission characteristic. The molecule undergoes mitochondria-to-nucleus translocation during apoptosis induced by PDT, thus enabling the in situ real-time monitoring via fluorescence migration. Moreover, by molecular charge engineering, we prove that the in situ translocation of TPE-4EP+ is mainly attributed to the enhanced interaction with DNA imposed by its multivalent positive charge. The ability of PS to provide PDT with real-time diagnosis help control the treatment dose that can avoid excessive phototoxicity and minimize potential side effect. Future development of new generation of PS is envisioned.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Células HeLa , Humanos , Imagem Molecular , Fármacos Fotossensibilizantes/química , Solubilidade
15.
Acc Chem Res ; 51(7): 1609-1620, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924584

RESUMO

Research on graphene abounds, from fundamental science to device applications. In pursuit of complementary morphologies, formation of graphene foams is often preferred over the native two-dimensional (2D) forms due to the higher available area. Graphene foams have been successfully prepared by several routes including chemical vapor deposition (CVD) methods and by wet-chemical approaches. For these methods, one often needs either high temperature furnaces and highly pure gases or large amounts of strong acids and oxidants. In 2014, using a commercial laser scribing system as found in most machine shops, a direct lasing of polyimide (PI) plastic films in the air converted the PI into 3D porous graphene, a material termed laser-induced graphene (LIG). This is a one-step method without the need for high-temperature reaction conditions, solvent, or subsequent treatments, and it affords graphene with many five-and seven-membered rings. With such an atomic arrangement, one might call LIG "kinetic graphene" since there is no annealing in the process that causes the rearrangement to the preferred all-six-membered-ring form. In this Account, we will first introduce the approaches that have been developed for making LIG and to control the morphology as either porous sheets or fibrils, and to control porosity, composition, and surface properties. The surfaces can be varied from being either superhydrophilic with a 0° contact angle with water to being superhydrophobic having >150° contact angle with water. While it was initially thought that the LIG process could only be performed on PI, it was later shown that a host of other polymeric substrates, nonpolymers, metal/plastic composites, and biodegradable and naturally occurring materials and foods could be used as platforms for generating LIG. Methods of preparation include roll-to-roll production for fabrication of in-plane electronics and two different 3D printing (additive manufacturing) routes to specific shapes of LIG monoliths using both laminated object manufacturing and powder bed fabrication methods. Use of the LIG in devices is performed very simply. This is showcased with high performance supercapacitors, fuel cell materials for oxygen reduction reactions, water splitting for both hydrogen and oxygen evolution reactions coming from the same plastic sheet, sensor devices, oil/water purification platforms, and finally applications in both passive and active biofilm inhibitors. So the ease of formation of LIG, its simple scale-up, and its utility for a range of applications highlights the easy transition of this substrate-bound graphene foam into commercial device platforms.

16.
Angew Chem Int Ed Engl ; 58(20): 6595-6599, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30689279

RESUMO

Molecular complexes with inexpensive transition-metal centers have drawn extensive attention, as they show a high selectivity in the electrochemical conversion of CO2 to CO. In this work, we propose a new strategy to covalently graft cobalt porphyrin onto the surface of a carbon nanotube by a substitution reaction at the metal center. Material characterization and electrochemical studies reveal that the porphyrin molecules are well dispersed at a high loading of 10 wt. %. As a result, the turnover frequency for CO formation is improved by a factor of three compared to traditional physically-mixed catalysts with the same cobalt content. This leads to an outstanding overall current density of 25.1 mA cm-2 and a Faradaic efficiency of 98.3 % at 490 mV overpotential with excellent long-term stability. This work provides an effective pathway for the improvement of the performance of electrocatalysts that could inspire rational design of molecular catalysts in the future.

17.
Carbon N Y ; 132: 623-631, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30270930

RESUMO

Heteroatom-doped metal-free graphene has been widely studied as the catalyst for the oxygen reduction reaction (ORR). Depending on the preparation method and the dopants, the ORR activity varies ranging from a two-electron to a four-electron pathway. The different literature reports are difficult to correlate due to the large variances. However, due to the potential metal contamination, the origin of the ORR activity from "metal-free" graphene remains confusing and inconclusive. Here we decipher the ORR catalytic activities of diverse architectures on graphene derived from reduced graphene oxide. High angle annular dark field scanning transmission electron microscopy, X-ray absorption near edge structure, extended X-ray absorption fine structure, and trace elemental analysis methods are employed. The mechanistic origin of ORR activity is associated with the trace manganese content and reaches its highest performance at an onset potential of 0.94 V when manganese exists as a mononuclear-centered structure within defective graphene. This study exposes the deceptive role of trace metal in formerly thought to be metal-free graphene materials. It also provides insight into the design of better-performing catalyst for ORR by underscoring the coordination chemistry possible for future single-atom catalyst materials.

18.
Nanotechnology ; 27(25): 255604, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27184338

RESUMO

Size-controlled and high-purity 3C-SiC nanoflakes (NFs) are synthesized on the tips of vertically aligned carbon nanotube (VA-CNT) carpets with a hot-filament chemical vapor deposition (HF-CVD) method. The average diameter and height of SiC NFs can be tuned by changing the thickness of per-deposited Si and growth conditions. The growth process of the SiC NFs is suggested to be dominated by a vapor-solid (VS) mechanism. The prepared SiC NFs exhibit quantum-confinement effects, emitting strong violet-blue photoluminescence (PL) under ultraviolet excitation. The PL peak position changes from 410 to 416 nm as the excitation line increases from 290 to 400 nm. This result opens the possibility for the application of the luminescent solid-state freestanding 3C-SiC NFs in photonics as well as photonics/electronics integration.

19.
Chem Commun (Camb) ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212335

RESUMO

BiVO4 is an attractive photoanode material for water oxidation, but requires surface treatment to improve the energy efficiency and stability. Herein, we investigate the role of borate buffer in activating the BiVO4 photoanode. We found that trace iron impurities in the borate buffer play a critical role in activating the photoanode. By optimizing the activation conditions, the photocurrent density attains 4.5 mA cm-2 at 1.23 VRHE without any cocatalysts, alongside a high ABPE value of 1.5% at 0.7 VRHE. Our study discloses the role of iron in the activation effect of borate buffer on the BiVO4 photoanode, which has implications for other catalytic systems.

20.
Small Methods ; : e2400118, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597770

RESUMO

The rising global population and improved living standards have led to an alarming increase in non-communicable diseases, notably cardiovascular and chronic respiratory diseases, posing a severe threat to human health. Wearable sensing devices, utilizing micro-sensing technology for real-time monitoring, have emerged as promising tools for disease prevention. Among various sensing platforms, graphene-based sensors have shown exceptional performance in the field of micro-sensing. Laser-induced graphene (LIG) technology, a cost-effective and facile method for graphene preparation, has gained particular attention. By converting polymer films directly into patterned graphene materials at ambient temperature and pressure, LIG offers a convenient and environmentally friendly alternative to traditional methods, opening up innovative possibilities for electronic device fabrication. Integrating LIG-based sensors into health monitoring systems holds the potential to revolutionize health management. To commemorate the tenth anniversary of the discovery of LIG, this work provides a comprehensive overview of LIG's evolution and the progress of LIG-based sensors. Delving into the diverse sensing mechanisms of LIG-based sensors, recent research advances in the domain of health monitoring are explored. Furthermore, the opportunities and challenges associated with LIG-based sensors in health monitoring are briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA