Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38944415

RESUMO

Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism. ONE-SENTENCE SUMMARY: High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and ß-ketoadipate pathways.


Assuntos
Técnicas Biossensoriais , Ácido Corísmico , Corynebacterium glutamicum , Ácido Sórbico , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Técnicas Biossensoriais/métodos , Ácido Sórbico/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Corísmico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161271

RESUMO

Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary amounts of intracellular manganese-over two orders of magnitude higher manganese content than other cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques suggested that the Cyanobacteria use it as a catalytic antioxidant-a valuable adaptation for coping with the substantial oxidative stress present in this environment. Taken together, these results indicated that the manganese enrichment in varnish is related to its specific uptake and use by likely founding members of varnish microbial communities.


Assuntos
Fenômenos Ecológicos e Ambientais , Sedimentos Geológicos/química , Manganês/análise , Antioxidantes/metabolismo , Cianobactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota , Oxirredução , Luz Solar , Água
3.
Environ Sci Technol ; 53(21): 12416-12424, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31553176

RESUMO

Iodine-129 is one of three key risk drivers at several US Department of Energy waste management sites. Natural organic matter (NOM) is thought to play important roles in the immobilization of aqueous iodide (I-) and iodate (IO3-) in the environment, but molecular interactions between NOM and iodine species are poorly understood. In this work, we investigated iodine and carbon speciation in three humic acid (HA)-I systems using I K-edge XANES and EXAFS and C K-edge XANES spectroscopy: (1) I- in the presence of laccase (an oxidase enzyme) and a mediator, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in a pH 4 buffer, (2) I- in the presence of lactoperoxidase (LPO) and H2O2 in a pH 7 buffer, and (3) IO3- in a pH 3 groundwater. Both oxidase and peroxidase systems could oxidize I- to I2 or hypoiodide (HOI) leading to organo-I formation. However, the laccase-ABTS mediator was the most effective and enhanced I- uptake by HA up to 13.5 mg/g, compared to 1.9 mg/g for the LPO-H2O2. IO3- was abiotically reduced to I2 or HOI leading to an organo-I formation. Pathways for HA iodination include covalent modification of aromatic-type rings by I2 / HOI or iodine incorporation into newly formed benzoquinone species arising from the oxidation of phenolic C species. This study improves our molecular-level understanding of NOM-iodine interactions and stresses the important role that mediators may play in the enzymatic reactions between iodine and NOM.


Assuntos
Iodetos , Iodo , Substâncias Húmicas , Peróxido de Hidrogênio , Oxirredução , Espectroscopia por Absorção de Raios X
4.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087533

RESUMO

Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils.IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in soil systems undermines attempts to determine the underlying causes of the population shifts or their impact on carbon cycling in soil. This study combines a systematic analysis of the polysaccharide degradation potential of a diverse collection of Actinomycetales isolates from surface soils of a semiarid grassland with analysis of genomes from five of these isolates and publicly available Actinomycetales genomes for genes encoding polysaccharide-active enzymes. The results address an important gap in knowledge of Actinomycetales ecophysiology-identification of key taxa capable of facilitating lignocellulose degradation in dryland soils. Information from this study will benefit future metagenomic studies related to carbon cycling in dryland soils by providing a baseline linkage of Actinomycetales phylogeny with lignocellulolytic functional potential.


Assuntos
Actinomycetales/metabolismo , Carboximetilcelulose Sódica/metabolismo , Quitina/metabolismo , Lignina/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Mudança Climática , Colorado , Pradaria , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
5.
Adv Appl Microbiol ; 101: 83-136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29050668

RESUMO

Iodine is a biophilic element that is important for human health, both as an essential component of several thyroid hormones and, on the other hand, as a potential carcinogen in the form of radioiodine generated by anthropogenic nuclear activity. Iodine exists in multiple oxidation states (-1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2), iodide (I-), iodate [Formula: see text] , or organic iodine (org-I). The mobility of iodine in the environment is dependent on its speciation and a series of redox, complexation, sorption, precipitation, and microbial reactions. Over the last 15years, there have been significant advances in iodine biogeochemistry, largely spurred by renewed interest in the fate of radioiodine in the environment. We review the biogeochemistry of iodine, with particular emphasis on the microbial processes responsible for volatilization, accumulation, oxidation, and reduction of iodine, as well as the exciting technological potential of these fascinating microorganisms and enzymes.


Assuntos
Iodo/metabolismo , Interações Microbianas/fisiologia , Humanos , Iodatos/química , Iodatos/metabolismo , Iodetos/química , Iodetos/metabolismo , Iodo/química , Iodo/deficiência , Radioisótopos do Iodo/química , Radioisótopos do Iodo/metabolismo , Oxirredução , Volatilização
6.
Environ Sci Technol ; 51(20): 11742-11751, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28933160

RESUMO

In order to examine the influence of the HA molecular composition on the partitioning of Pu, ten different kinds of humic acids (HAs) of contrasting chemical composition, collected and extracted from different soil types around the world were equilibrated with groundwater at low Pu concentrations (10-14 M). Under mildly acidic conditions (pH ∼ 5.5), 29 ± 24% of the HAs were released as colloidal organic matter (>3 kDa to <0.45 µm), yet this HA fraction accounted for a vast majority of the bound Pu, 76 ± 13% on average. In comparison, the particulate HA fraction bound only 8 ± 4% on average of the added Pu. The truly dissolved Pu fraction was typically <1%. Pu binding was strongly and positively correlated with the concentrations of organic nitrogen in both particulate (>0.45 µm) and colloidal phases in terms of activity percentage and partitioning coefficient values (logKd). Based on molecular characterization of the HAs by solid state 13C nuclear magnetic resonance (NMR) and elemental analysis, Pu binding was correlated to the concentration of carboxylate functionalities and nitrogen groups in the particulate and colloidal phases. The much greater tendency of Pu to bind to colloidal HAs than to particulate HA has implications on whether NOM acts as a Pu source or sink during natural or man-induced episodic flooding.


Assuntos
Substâncias Húmicas , Plutônio , Poluentes Radioativos do Solo , Compostos Orgânicos , Solo
7.
Appl Environ Microbiol ; 80(10): 3103-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610855

RESUMO

Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Ar/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Dióxido de Carbono/metabolismo , Clima , Ecossistema , Fertilizantes/análise , Fixação de Nitrogênio , Solo/química
8.
Appl Environ Microbiol ; 80(9): 2693-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24561582

RESUMO

The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 µM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.


Assuntos
Iodetos/metabolismo , Manganês/metabolismo , Roseobacter/metabolismo , Superóxidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Roseobacter/enzimologia , Roseobacter/genética , Roseobacter/isolamento & purificação , Água do Mar/microbiologia
9.
Environ Sci Technol ; 48(19): 11218-26, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25219373

RESUMO

(129)I derived from a former radionuclide disposal basin located on the Savannah River Site (SRS) has concentrated in a wetland 600 m downstream. To evaluate temporal environmental influences on iodine speciation and mobility in this subtropical wetland environment, groundwater was collected over a three-year period (2010-2012) from a single location. Total (127)I and (129)I showed significant temporal variations, ranging from 68-196 nM for (127)I and <5-133 pCi/L for (129)I. These iodine isotopes were significantly correlated with groundwater acidity and nitrate, two parameters elevated within the contaminant plume. Additionally, (129)I levels were significantly correlated with those of (127)I, suggesting that biogeochemical controls on (127)I and (129)I are similar within the SRS aquifer/wetland system. Iodine speciation demonstrates temporal variations as well, reflecting effects from surface recharges followed by acidification of groundwater and subsequent formation of anaerobic conditions. Our results reveal a complex system where few single ancillary parameters changed in a systematic manner with iodine speciation. Instead, changes in groundwater chemistry and microbial activity, driven by surface hydrological events, interact to control iodine speciation and mobility. Future radiological risk models should consider the flux of (129)I in response to temporal changes in wetland hydrologic and chemical conditions.


Assuntos
Água Subterrânea/análise , Radioisótopos do Iodo/análise , Iodo/análise , Rios/química , Poluentes Radioativos da Água/análise , Água Subterrânea/química , Hidrologia/métodos , Isótopos de Iodo/análise , Modelos Teóricos , Fatores de Risco , South Carolina , Áreas Alagadas
10.
Environ Sci Technol ; 47(17): 9635-42, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23885783

RESUMO

The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.


Assuntos
Carbonato de Cálcio/química , Água Subterrânea/análise , Iodatos/química , Iodo/análise , Poluentes Radioativos da Água/análise , Carbonato de Cálcio/análise , Carbonatos/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Iodatos/análise , Radioisótopos do Iodo/análise , Oxigênio/análise , Washington
11.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679315

RESUMO

With the rapid pace of advancements in additive manufacturing and techniques such as fused filament fabrication (FFF), the feedstocks used in these techniques should advance as well. While available filaments can be used to print highly customizable parts, the creation of the end part is often the only function of a given feedstock. In this study, novel FFF filaments with inherent environmental sensing functionalities were created by melt-blending poly(lactic acid) (PLA), poly(ethylene glycol) (PEG), and pH indicator powders (bromothymol blue, phenolphthalein, and thymol blue). The new PLA-PEG-indicator filaments were universally more crystalline than the PLA-only filaments (33-41% vs. 19% crystallinity), but changes in thermal stability and mechanical characteristics depended upon the indicator used; filaments containing bromothymol blue and thymol blue were more thermally stable, had higher tensile strength, and were less ductile than PLA-only filaments, while filaments containing phenolphthalein were less thermally stable, had lower tensile strength, and were more ductile. When the indicator-filled filaments were exposed to acidic, neutral, and basic solutions, all filaments functioned as effective pH sensors, though the bromothymol blue-containing filament was only successful as a base indicator. The biodegradability of the new filaments was evaluated by characterizing filament samples after aging in soil and soil slurry mixtures; the amount of physical deterioration and changes in filament crystallinity suggested that the bromothymol blue filament degraded faster than PLA-only filaments, while the phenolphthalein and thymol blue filaments saw decreases in degradation rates.

12.
Front Chem ; 11: 1105641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936531

RESUMO

129I is a nuclear fission decay product of concern because of its long half-life (16 Ma) and propensity to bioaccumulate. Microorganisms impact iodine mobility in soil systems by promoting iodination (covalent binding) of soil organic matter through processes that are not fully understood. Here, we examined iodide uptake by soils collected at two depths (0-10 and 10-20 cm) from 5 deciduous and coniferous forests in Japan and the United States. Autoclaved soils, and soils amended with an enzyme inhibitor (sodium azide) or an antibacterial agent (bronopol), bound significantly less 125I tracer (93%, 81%, 61% decrease, respectively) than the untreated control soils, confirming a microbial role in soil iodide uptake. Correlation analyses identified the strongest significant correlation between 125I uptake and three explanatory variables, actinobacteria soil biomass (p = 6.04E-04, 1.35E-02 for Kendall-Tau and regression analysis, respectively), soil nitrogen content (p = 4.86E-04, 4.24E-03), and soil oxidase enzyme activity at pH 7.0 using the substrate L-DOPA (p = 2.83E-03, 4.33E-04) and at pH 5.5 using the ABTS (p = 5.09E-03, 3.14E-03). Together, the results suggest that extracellular oxidases, primarily of bacterial origin, are the primary catalyst for soil iodination in aerobic, surface soils of deciduous and coniferous forests, and that soil N content may be indicative of the availability of binding sites for reactive iodine species.

13.
J Environ Radioact ; 263: 107183, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094504

RESUMO

Grout materials are commonly used to immobilize low-level radioactive waste. Organic moieties can be unintentionally present in common ingredients used to make these grout waste forms, which may result in the formation of organo-radionuclide species. These species can positively or negatively affect the immobilization efficiency. However, the presence of organic carbon compounds is rarely considered in models or characterized chemically. Here, we quantify the organic pool of grout formulations with and without slag, as well as the individual dry ingredients used to make the grout samples (ordinary Portland cement (OPC), slag and fly ash), including total organic carbon (TOC) and black carbon, followed by aromaticity evaluation and molecular characterization via Electro Spray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICRMS). All dry grout ingredients contained significant amounts of organic carbon, ranging from 550 mg/kg to 6250 mg/kg for the TOC pool, with an averaged abundance of 2933 ± 2537 mg/kg, of which 60 ± 29% was composed of black carbon. The significant abundance of a black carbon pool implies the presence of the aromatic-like compounds, which was further identified by both phosphate buffer-assisted aromaticity evaluation (e.g., >1000 mg-C/kg as aromatic-like carbon in the OPC) and dichloromethane (DCM) extraction with ESI-FTICRMS analysis. Besides aromatic-like compounds, other organic moieties were also detected in the OPC, such as carboxyl-containing aliphatic molecules. While the organic compound only consists of minor fractions of the grout materials investigated, our observations of the presence of various radionuclide-binding organic moieties suggests the potential formation of organo-radionuclides, such as radioiodine, which might be present at lower molar concentrations than TOC. Evaluating the role of organic carbon complexation in controlling the disposed radionuclides, especially for those radionuclides with strong association with organic carbon, has important implications for the long-term immobilization of radioactive waste in grout systems.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Radioisótopos do Iodo/química , Carbono , Espectrometria de Massas
14.
Environ Microbiol ; 14(12): 3247-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23116182

RESUMO

Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.


Assuntos
Adaptação Biológica/genética , Dióxido de Carbono/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Microbiologia do Solo , Biodiversidade , Biomassa , Cianobactérias/genética , Ecossistema , Biblioteca Gênica , Metagenoma , Nevada , Estresse Oxidativo , Estados Unidos
15.
Environ Sci Technol ; 46(9): 4837-44, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22455542

RESUMO

To develop an understanding of the role that microorganisms play in the transport of (129)I in soil-water systems, bacteria isolated from subsurface sediments were assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures enhanced iodide oxidation 2-10 fold in the presence of H(2)O(2). Organic acids secreted by the bacteria were found to enhance iodide oxidation by (1) lowering the pH of the spent medium, and (2) reacting with H(2)O(2) to form peroxy carboxylic acids, which are extremely strong oxidizing agents. H(2)O(2)-dependent iodide oxidation increased exponentially from 8.4 to 825.9 µM with decreasing pH from 9 to 4. Organic acids with ≥2 carboxy groups enhanced H(2)O(2)-dependent iodide oxidation (1.5-15-fold) as a function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0. The results indicate that as pH decreases (≤5.0), increasing H(2)O(2) hydrolysis is the driving force behind iodide oxidation. However, at pH ≥ 6.0, spontaneous decomposition of peroxy carboxylic acids, generated from H(2)O(2) and organic acids, contributes significantly to iodide oxidation. The results reveal an indirect microbial mechanism, organic acid secretion coupled to H(2)O(2) production, that could enhance iodide oxidation and organo-iodine formation in soils and sediments.


Assuntos
Iodetos/química , Microbiologia do Solo , Poluentes Radioativos do Solo/química , Bactérias/metabolismo , Ácidos Carboxílicos/química , Peróxido de Hidrogênio/química , Radioisótopos do Iodo/química , Oxirredução
16.
Sci Total Environ ; 814: 152546, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34973322

RESUMO

The complex biogeochemical behavior of iodine (I) isotopes and their interaction with natural organic matter (NOM) pose a challenge for transport models. Here, we present results from iodination experiments with humic acid (HA) and fulvic acid (FA) using 1H-13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. Even though not a quantitative approach, 1H-13C HSQC NMR corroborated that iodination of NOM occurs primarily through aromatic electrophilic substitution of proton by I, and also revealed how iodination chemically alters HA and FA in a manner that potentially affects the mobility of iodinated NOM in the environment. Three types of iodination experiments were conducted with HA and FA: a) non-enzymatic iodination by IO3- (pH 3) and I- (pH 4 and 7), b) addition of lactoperoxidase to promote I--iodination in the presence of the co-substrate, H2O2 (pH 7), and c) addition of laccase for facilitating I--iodination in the presence of O2, with or without a mediator (pH 4). When mediators or H2O2 were present, extracellular oxidases and peroxidases enhanced I- incorporation into NOM by between 54% and 3400%. Iodination of HA, which was less than that of FA, enhanced HA's stability (inferred from increases in aliphatic compounds, decreases in carbohydrate moieties, and thus increased molecular hydrophobicity) yet reduced HA's tendency to incorporate more iodine. As such, HA is expected to act more as a sink for iodine in the environment. In contrast, iodination of FA appeared to generate additional iodine binding sites, which resulted in greater iodine uptake capability and enhanced mobility (inferred from decreases in aliphatic compounds, increases in carbohydrates, and thus decreases in molecular hydrophobicity). These results indicate that certain NOM moieties may enhance while others may inhibit radioiodine mobility in the aqueous environment.


Assuntos
Iodo , Halogenação , Substâncias Húmicas , Peróxido de Hidrogênio , Radioisótopos do Iodo , Prótons
17.
Appl Environ Microbiol ; 77(6): 2153-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278282

RESUMO

(129)I is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (∼16 million years). The aim of this study was to determine if bacteria from a (129)I-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 µM I(-)). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 µM), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H(2)O(2), was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I(-) concentration (up to 10 µM I(-)), and increased at pH values of <6. Overall, the data indicate that I(-) accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of (129)I and to the biogeochemical cycling of iodine over geologic time.


Assuntos
Bactérias Aeróbias/metabolismo , Sedimentos Geológicos/análise , Radioisótopos do Iodo/metabolismo , Monitoramento Ambiental , Radioisótopos do Iodo/análise , Filogenia , RNA Ribossômico 16S/genética , Rios , South Carolina
18.
Environ Sci Technol ; 45(23): 9975-83, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22035296

RESUMO

In order to investigate the distributions and speciation of (129)I (and (127)I) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I(-) or IO(3)(-) were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in (129)I remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I(-) or IO(3)(-) as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH ≥5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release.


Assuntos
Radioisótopos do Iodo/química , Compostos Orgânicos/química , Poluentes do Solo/química , Solo/química , Poluentes Radioativos da Água/química , Recuperação e Remediação Ambiental , Rios
19.
Environ Sci Technol ; 45(2): 489-95, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21138294

RESUMO

Field and laboratory studies were carried out to understand the cause for steady increases in (129)I concentrations emanating from radiological basins located on the Savannah River Site, South Carolina. The basins were closed in 1988 by adding limestone and slag and then capping with a low permeability engineered cover. Groundwater (129)I concentrations in a well near the basins in 1993 were 200 pCi L(-1) and are presently between 400 and 1000 pCi L(-1). Iodine speciation in the plume contained wide ranges of iodide, iodate, and organo-iodine concentrations. First-order calculations based on a basin sediment desorption study indicate that the modest increase of 0.7 pH units detected in the study site groundwater over the last 17 years since closure of the basins may be sufficient to produce the observed increased groundwater (129)I concentrations near the basins. Groundwater monitoring of the plume at the basins has shown that the migration of many of the high risk radionuclides originally present at this complex site has been attenuated. However, (129)I continues to leave the source at a rate that may have been exacerbated by the initial remediation efforts. This study underscores the importance of identifying the appropriate in situ stabilization technologies for all source contaminants, especially if their geochemical behaviors differ.


Assuntos
Radioisótopos do Iodo/análise , Monitoramento de Radiação/métodos , Rios/química , Poluentes Radioativos da Água/análise , Adsorção , Recuperação e Remediação Ambiental/métodos , Radioisótopos do Iodo/química , South Carolina , Movimentos da Água , Poluentes Radioativos da Água/química
20.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671918

RESUMO

In addition to possessing the desirable properties of being a biodegradable and biocompatible polymer fabricated from renewable resources, poly (lactic acid) (PLA) has useful mechanical and thermal attributes that has enabled it to be one of the most widely-used plastics for medicine, manufacturing, and agriculture. Yet, PLA composites have not been heavily explored for use in 3D-printing applications, and the range of feasible materials for the technology is limited, which inhibits its potential growth and industry adoption. In this study, tunable, multifunctional antimicrobial PLA composite filaments for 3D-printing have been fabricated and tested via chemical, thermal, mechanical, and antimicrobial experiments. Thermally stable antimicrobial ceramics, ZnO and TiO2, were used as fillers up to 30 wt%, and poly (ethylene glycol) (PEG) was used as a plasticizer to tune the physical material properties. Results demonstrate that the PLA composite filaments exhibit the thermal phase behaviors and thermal stability suitable for 3D-printing. Additionally, PEG can be used to tune the mechanical properties while not affecting the antimicrobial efficacy that ZnO and TiO2 imbue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA