Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 144(2): 253-67, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21241894

RESUMO

The study of macroautophagy in mammalian cells has described induction, vesicle nucleation, and membrane elongation complexes as key signaling intermediates driving autophagosome biogenesis. How these components are recruited to nascent autophagosomes is poorly understood, and although much is known about signaling mechanisms that restrain autophagy, the nature of positive inductive signals that can promote autophagy remain cryptic. We find that the Ras-like small G protein, RalB, is localized to nascent autophagosomes and is activated on nutrient deprivation. RalB and its effector Exo84 are required for nutrient starvation-induced autophagocytosis, and RalB activation is sufficient to promote autophagosome formation. Through direct binding to Exo84, RalB induces the assembly of catalytically active ULK1 and Beclin1-VPS34 complexes on the exocyst, which are required for isolation membrane formation and maturation. Thus, RalB signaling is a primary adaptive response to nutrient limitation that directly engages autophagocytosis through mobilization of the core vesicle nucleation machinery.


Assuntos
Autofagia , Células Epiteliais/patologia , Fagossomos/metabolismo , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/microbiologia , Humanos , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Proteínas de Transporte Vesicular/metabolismo
2.
Mol Cell ; 42(5): 650-61, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21658605

RESUMO

The coordination of the several pathways involved in cell motility is poorly understood. Here, we identify SH3BP1, belonging to the RhoGAP family, as a partner of the exocyst complex and establish a physical and functional link between two motility-driving pathways, the Ral/exocyst and Rac signaling pathways. We show that SH3BP1 localizes together with the exocyst to the leading edge of motile cells and that SH3BP1 regulates cell migration via its GAP activity upon Rac1. SH3BP1 loss of function induces abnormally high Rac1 activity at the front, as visualized by in vivo biosensors, and disorganized and instable protrusions, as revealed by cell morphodynamics analysis. Consistently, constitutively active Rac1 mimics the phenotype of SH3BP1 depletion: slow migration and aberrant cell morphodynamics. Our finding that SH3BP1 downregulates Rac1 at the motile-cell front indicates that Rac1 inactivation in this location, as well as its activation by GEF proteins, is a fundamental requirement for cell motility.


Assuntos
Movimento Celular/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Regulação para Baixo , Ativação Enzimática , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Inativação Gênica , Centro Organizador dos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Ratos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/fisiologia
3.
Nat Commun ; 14(1): 444, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707536

RESUMO

Neural stem cell (NSC) maintenance and functions are regulated by reactive oxygen species (ROS). However, the mechanisms by which ROS control NSC behavior remain unclear. Here we report that ROS-dependent Igfbp2 signaling controls DNA repair pathways which balance NSC self-renewal and lineage commitment. Ncf1 or Igfbp2 deficiency constrains NSCs to a self-renewing state and prevents neurosphere formation. Ncf1-dependent oxidation of Igfbp2 promotes neurogenesis by NSCs in vitro and in vivo while repressing Brca1 DNA damage response genes and inducing DNA double-strand breaks (DDSBs). By contrast, Ncf1-/- and Igfbp2-/- NSCs favor the formation of oligodendrocytes in vitro and in vivo. Notably, transient repression of Brca1 DNA repair pathway genes induces DDSBs and is sufficient to rescue the ability of Ncf1-/- and Igfbp2-/- NSCs to lineage-commit to form neurospheres and neurons. NSC lineage commitment is dependent on the oxidizable cysteine-43 residue of Igfbp2. Our study highlights the role of DNA damage/repair in orchestrating NSC fate decisions downstream of redox-regulated Igfbp2.


Assuntos
Células-Tronco Neurais , Diferenciação Celular/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Oxirredução , Dano ao DNA , Proliferação de Células
4.
EMBO J ; 27(18): 2375-87, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18756269

RESUMO

The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression.


Assuntos
Citocinese , Regulação da Expressão Gênica , Proteínas ral de Ligação ao GTP/fisiologia , Fator ral de Troca do Nucleotídeo Guanina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Células HeLa , Humanos , Cinética , Mitose , Modelos Biológicos , Proteínas de Transporte Vesicular/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
5.
Nat Cell Biol ; 6(2): 106-12, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14743217

RESUMO

Protein kinase D (PKD) binds to diacylglycerol (DAG) in the trans-Golgi network (TGN) and is activated by trimeric G-protein subunits beta gamma. This complex then regulates the formation of transport carriers in the TGN that traffic to the plasma membrane in non-polarized cells. Here we report specificity of different PKD isoforms in regulating protein trafficking from the TGN. Kinase-inactive forms of PKD1, PKD2 and PKD3 localize to the TGN in polarized and non-polarized cells. PKD activity is required only for the transport of proteins containing basolateral sorting information, and seems to be cargo specific.


Assuntos
Proteína Quinase C/metabolismo , Proteínas Quinases/metabolismo , Rede trans-Golgi/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Diglicerídeos/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HeLa , Humanos , Isoenzimas/metabolismo , Proteína Quinase C/genética , Proteína Quinase D2 , Proteínas Quinases/genética , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Cell Rep ; 36(5): 109491, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348154

RESUMO

The exocyst is an evolutionarily conserved protein complex that regulates vesicular trafficking and scaffolds signal transduction. Key upstream components of the exocyst include monomeric RAL GTPases, which help mount cell-autonomous responses to trophic and immunogenic signals. Here, we present a quantitative proteomics-based characterization of dynamic and signal-dependent exocyst protein interactomes. Under viral infection, an Exo84 exocyst subcomplex assembles the immune kinase Protein Kinase R (PKR) together with the Hippo kinase Macrophage Stimulating 1 (MST1). PKR phosphorylates MST1 to activate Hippo signaling and inactivate Yes Associated Protein 1 (YAP1). By contrast, a Sec5 exocyst subcomplex recruits another immune kinase, TANK binding kinase 1 (TBK1), which interacted with and activated mammalian target of rapamycin (mTOR). RALB was necessary and sufficient for induction of Hippo and mTOR signaling through parallel exocyst subcomplex engagement, supporting the cellular response to virus infection and oncogenic signaling. This study highlights RALB-exocyst signaling subcomplexes as mechanisms for the integrated engagement of Hippo and mTOR signaling in cells challenged by viral pathogens or oncogenic signaling.


Assuntos
Via de Sinalização Hippo , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Vírus/isolamento & purificação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Citosol/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Viroses/metabolismo , Proteínas de Sinalização YAP/metabolismo , eIF-2 Quinase/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo
7.
Mol Biol Cell ; 18(10): 3978-92, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17686995

RESUMO

The octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-O-permeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis. The latter was selectively dependent on interactions between the small GTPase Rab11a and Sec15A and was inhibited by expression of the C-terminus of Sec15A or down-regulation of Sec15A expression using shRNA. These results indicate that the exocyst complex may be a multipurpose regulator of endocytic traffic directed toward both poles of polarized epithelial cells and that transcytotic traffic is likely to require Rab11a-dependent recruitment and modulation of exocyst function, likely through interactions with Sec15A.


Assuntos
Polaridade Celular , Endocitose , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Permeabilidade da Membrana Celular , Cães , Regulação para Baixo/genética , Endossomos/metabolismo , Imunoglobulina A/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Transporte Proteico , Coelhos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo
8.
Mol Cell Biol ; 26(1): 140-54, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354686

RESUMO

Reactive oxygen species (ROS) generated by NADPH oxidases (Nox) have been implicated in the regulation of signal transduction. However, the cellular mechanisms that link Nox activation with plasma membrane receptor signaling remain poorly defined. We have found that Nox2-derived ROS influence the formation of an active interleukin-1 (IL-1) receptor complex in the endosomal compartment by directing the H2O2-dependent binding of TRAF6 to the IL-1R1/MyD88 complex. Clearance of both superoxide and H2O2 from within the endosomal compartment significantly abrogated IL-1beta-dependent IKK and NF-kappaB activation. MyD88-dependent endocytosis of IL-1R1 following IL-1beta binding was required for the redox-dependent formation of an active endosomal receptor complex competent for IKK and NF-kappaB activation. Small interfering RNAs to either MyD88 or Rac1 inhibited IL-1beta induction of endosomal superoxide and NF-kappaB activation. However, MyD88 and Rac1 appear to be recruited independently to IL-1R1 following ligand stimulation. In this context, MyD88 binding was required for inducing endocytosis of IL-1R1 following ligand binding, while Rac1 facilitated the recruitment of Nox2 into the endosomal compartment and subsequent redox-dependent recruitment of TRAF6 to the MyD88/IL-1R1 complex. The identification of Nox-active endosomes helps explain how subcellular compartmentalization of redox signals can be used to direct receptor activation from the plasma membrane.


Assuntos
Endossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Receptores de Interleucina-1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Humanos , Peróxido de Hidrogênio/farmacologia , Interleucina-1/farmacologia , Glicoproteínas de Membrana/genética , Fator 88 de Diferenciação Mieloide , NADPH Oxidase 2 , NADPH Oxidases/genética , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptores Tipo I de Interleucina-1 , Superóxidos/metabolismo , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/genética
9.
J Cell Biol ; 218(7): 2247-2264, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31197029

RESUMO

B lymphocytes capture antigens from the surface of presenting cells by forming an immune synapse. Local secretion of lysosomes, which are guided to the synaptic membrane by centrosome repositioning, can facilitate the extraction of immobilized antigens. However, the molecular basis underlying their delivery to precise domains of the plasma membrane remains elusive. Here we show that microtubule stabilization, triggered by engagement of the B cell receptor, acts as a cue to release centrosome-associated Exo70, which is redistributed to the immune synapse. This process is coupled to the recruitment and activation of GEF-H1, which is required for assembly of the exocyst complex, used to promote tethering and fusion of lysosomes at the immune synapse. B cells silenced for GEF-H1 or Exo70 display defective lysosome secretion, which results in impaired antigen extraction and presentation. Thus, centrosome repositioning coupled to changes in microtubule stability orchestrates the spatial-temporal distribution of the exocyst complex to promote polarized lysosome secretion at the immune synapse.


Assuntos
Apresentação de Antígeno/genética , Linfócitos B/imunologia , Sinapses Imunológicas/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas de Transporte Vesicular/genética , Animais , Apresentação de Antígeno/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Membrana Celular/imunologia , Polaridade Celular/genética , Polaridade Celular/imunologia , Centrossomo/imunologia , Exocitose/genética , Exocitose/imunologia , Lisossomos/genética , Lisossomos/imunologia , Camundongos , Microtúbulos/genética , Microtúbulos/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia
10.
Small GTPases ; 9(5): 375-383, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-27880081

RESUMO

IQGAP1 is a scaffold protein involved in the assembly of adherens junctions. Our work has recently revealed a novel role for IQGAP1 in the regulation of tight junctions (TJ) through differential recruitment of claudins to the nascent TJ. Here, we discuss the potential mechanisms of this regulation, including IQGAP1 effects on CDC42, and IQGAP1 interactions with sorting/trafficking molecules (e.g. Exo70). Given the many roles of IQGAP1 and the large number of interacting partners, we focus our discussion of these functions in the context of junction formation, trafficking, growth factor signaling and cancer. We also propose a potential role for IQGAP1 in regulating epithelial integrity and compartmentalized signaling in epithelia.


Assuntos
Junções Íntimas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Adesão Celular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
11.
Cell Stem Cell ; 22(5): 653-667.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656941

RESUMO

The mouse trachea is thought to contain two distinct stem cell compartments that contribute to airway repair-basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) cell type. Whether a lineage relationship exists between these two stem cell compartments remains unclear. Using lineage tracing of glandular myoepithelial cells (MECs), we demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established lasting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly, dose-dependent MEC conditional activation of Lef-1 in vivo promoted self-limited airway regeneration in the absence of injury. Thus, modulating the Lef-1 transcriptional program in MEC-derived progenitors may have regenerative medicine applications for lung diseases.


Assuntos
Células Epiteliais/citologia , Glândulas Exócrinas/citologia , Mucosa Respiratória/citologia , Células-Tronco/citologia , Traqueia/citologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos
12.
Mol Biol Cell ; 13(1): 158-68, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11809830

RESUMO

The Drosophila tumor suppressor protein lethal (2) giant larvae [l(2)gl] is involved in the establishment of epithelial cell polarity during development. Recently, a yeast homolog of the protein has been shown to interact with components of the post-Golgi exocytic machinery and to regulate a late step in protein secretion. Herein, we characterize a mammalian homolog of l(2)gl, called Mlgl, in the epithelial cell line Madin-Darby canine kidney (MDCK). Consistent with a role in cell polarity, Mlgl redistributes from a cytoplasmic localization to the lateral membrane after contact-naive MDCK cells make cell-cell contacts and establish a polarized phenotype. Phosphorylation within a highly conserved region of Mlgl is required to restrict the protein to the lateral domain, because a recombinant phospho-mutant is distributed in a nonpolar manner. Membrane-bound Mlgl from MDCK cell lysates was coimmunoprecipitated with syntaxin 4, a component of the exocytic machinery at the basolateral membrane, but not with other plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins that are either absent from or not restricted to the basolateral membrane domain. These data suggest that Mlgl contributes to apico-basolateral polarity by regulating basolateral exocytosis.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila , Exocitose/fisiologia , Proteínas de Insetos/metabolismo , Proteínas Supressoras de Tumor , Proteínas de Transporte Vesicular , Células 3T3 , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Membrana Celular/metabolismo , Sequência Conservada , Cães , Drosophila/genética , Células Epiteliais/metabolismo , Imunofluorescência , Proteínas de Insetos/química , Proteínas de Insetos/genética , Rim/citologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Proteínas Qa-SNARE , Proteínas SNARE
13.
Front Cell Dev Biol ; 4: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27376061

RESUMO

Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used. Antibodies to Sec6NT co-precipitated substantially more Sec5, -10, -15, Exo70 and -84 than did those to Sec6CT. In contrast, antibodies to Sec6CT co-precipitated more Sec3 and Sec8 than did those to Sec6NT. These results are consistent with a model in which exocyst activation during periods of rapid membrane expansion is accompanied by molecular rearrangements within the holocomplex or association with accessory proteins, which expose the Sec6 C-terminal domain when the complex is membrane-bound and conceal it when the complex is cytoplasmic.

14.
Mol Cell Biol ; 35(21): 3633-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283729

RESUMO

The exocyst is a heterooctomeric complex well appreciated for its role in the dynamic assembly of specialized membrane domains. Accumulating evidence indicates that this macromolecular machine also serves as a physical platform that coordinates regulatory cascades supporting biological systems such as host defense signaling, cell fate, and energy homeostasis. The isolation of multiple components of the DNA damage response (DDR) as exocyst-interacting proteins, together with the identification of Sec8 as a suppressor of the p53 response, suggested functional interactions between the exocyst and the DDR. We found that exocyst perturbation resulted in resistance to ionizing radiation (IR) and accelerated resolution of DNA damage. This occurred at the expense of genomic integrity, as enhanced recombination frequencies correlated with the accumulation of aberrant chromatid exchanges. Sec8 perturbation resulted in the accumulation of ATF2 and RNF20 and the promiscuous accumulation of DDR-associated chromatin marks and Rad51 repairosomes. Thus, the exocyst supports DNA repair fidelity by limiting the formation of repair chromatin in the absence of DNA damage.


Assuntos
Reparo do DNA , Instabilidade Genômica , Proteínas de Transporte Vesicular/metabolismo , Fator 2 Ativador da Transcrição/análise , Fator 2 Ativador da Transcrição/metabolismo , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1 , Linhagem Celular Tumoral , Exocitose , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/análise
16.
PLoS One ; 7(6): e39602, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761837

RESUMO

Metastasis is a complex process during which several gross cellular changes occur. Cells must dissociate from the tumor mass and gain the ability to degrade extracellular matrix and migrate in order to ultimately attach and form a satellite tumor. Regulation of the actin cytoskeleton is an indispensible aspect of cell migration, and many different factors have been implicated in this process. We identified interactions between RalA and its effectors in the Exocyst complex as directly necessary for migration and invasion of prostate cancer tumor cells. Blocking RalA-Exocyst binding caused significant morphological changes and defects in single and coordinated cell migration.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Forma Celular/fisiologia , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Metástase Neoplásica/genética , Proteínas de Transporte Vesicular/genética , Proteínas ral de Ligação ao GTP/genética
17.
Fluids Barriers CNS ; 9(1): 22, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23046663

RESUMO

BACKGROUND: Hydrocephalus is a heterogeneous disorder with multiple etiologies that are not yet fully understood. Animal models have implicated dysfunctional cilia of the ependyma and choroid plexus in the development of the disorder. In this report, we sought to determine the origin of the ventriculomegaly in four Bardet Biedl syndrome (BBS) mutant mouse strains as models of a ciliopathy. METHODS: Evans Blue dye was injected into the lateral ventricle of wild- type and BBS mutant mice to determine whether obstruction of intra- or extra-ventricular CSF flow contributed to ventriculomegaly. Transmission electron microscopy (TEM) was used to examine the ultrastructure of the choroid plexus, subfornical organ (SFO), subcommisural organ (SCO), and ventricular ependyma to evaluate their ultrastructure and the morphology of their primary and motile cilia. RESULTS AND DISCUSSION: No obstruction of intra- or extra-ventricular CSF flow was observed, implying a communicating form of hydrocephalus in BBS mutant mice. TEM analyses of the mutants showed no evidence of choroidal papillomas or breakdown of the blood:CSF barrier. In contrast, structural defects were observed in a subpopulation of cilia lining the choroid plexus, SFO, and ventricular ependyma. These included disruptions of the microtubular structure of the axoneme and the presence of electron-dense vesicular-like material along the ciliary shaft and at the tips of cilia. CONCLUSIONS: Abnormalities in cilia structure and function have the potential to influence ciliary intraflagellar transport (IFT), cilia maintenance, protein trafficking, and regulation of CSF production. Ciliary structural defects are the only consistent pathological features associated with CSF-related structures in BBS mutant mice. These defects are observed from an early age, and may contribute to the underlying pathophysiology of ventriculomegaly.

18.
Mol Biol Cell ; 22(24): 4787-800, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22013078

RESUMO

Tight junctions (TJs) are structures indispensable to epithelial cells and are responsible for regulation of paracellular diffusion and maintenance of cellular polarity. Although many interactions between TJ constituents have been identified, questions remain concerning how specific functions of TJs are established and regulated. Here we investigated the roles of Ral GTPases and their common effector exocyst complex in the formation of nascent TJs. Unexpectedly, RNA interference-mediated suppression of RalA or RalB caused opposing changes in TJ development. RalA reduction increased paracellular permeability and decreased incorporation of components into TJs, whereas RalB reduction decreased paracellular permeability and increased incorporation of components into TJs. Activities of both Ral GTPases were mediated through the exocyst. Finally, we show that TJ-mediated separation of apical-basal membrane domains is established prior to equilibration of barrier function and that it is unaffected by Ral knockdown or specific composition of TJs.


Assuntos
Células Epiteliais/metabolismo , Junções Íntimas/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Cães , Células Epiteliais/citologia , Técnicas de Silenciamento de Genes , Humanos , Junções Íntimas/genética , Proteínas ral de Ligação ao GTP/genética
19.
Mol Biol Cell ; 21(1): 152-64, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19889837

RESUMO

The Exocyst is a conserved multisubunit complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. In mammalian epithelial cells, Exocyst complexes are recruited to nascent sites of cell-cell contact in response to E-cadherin-mediated adhesive interactions, and this event is an important early step in the assembly of intercellular junctions. Sec3 has been hypothesized to function as a spatial landmark for the development of polarity in budding yeast, but its role in epithelial cells has not been investigated. Here, we provide evidence in support of a function for a Sec3-containing Exocyst complex in the assembly or maintenance of desmosomes, adhesive junctions that link intermediate filament networks to sites of strong intercellular adhesion. We show that Sec3 associates with a subset of Exocyst complexes that are enriched at desmosomes. Moreover, we found that membrane recruitment of Sec3 is dependent on cadherin-mediated adhesion but occurs later than that of the known Exocyst components Sec6 and Sec8 that are recruited to adherens junctions. RNA interference-mediated suppression of Sec3 expression led to specific impairment of both the morphology and function of desmosomes, without noticeable effect on adherens junctions. These results suggest that two different exocyst complexes may function in basal-lateral membrane trafficking and will enable us to better understand how exocytosis is spatially organized during development of epithelial plasma membrane domains.


Assuntos
Desmossomos/metabolismo , Células Epiteliais/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Especificidade de Anticorpos , Caderinas/metabolismo , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular , Centríolos/metabolismo , Desmogleína 2/metabolismo , Cães , Células Epiteliais/citologia , Humanos , Camundongos , Ligação Proteica , Transporte Proteico , Frações Subcelulares/metabolismo
20.
Mol Biol Cell ; 20(1): 102-13, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19005211

RESUMO

Stress-induced shedding of motile cilia (autotomy) has been documented in diverse organisms and likely represents a conserved cellular reaction. However, little is known about whether primary cilia are shed from mammalian epithelial cells and what impact deciliation has on polarized cellular organization. We show that several chemically distinct agents trigger autotomy in epithelial cells. Surprisingly, deciliation is associated with a significant, but reversible increase in transepithelial resistance. This reflects substantial reductions in tight junction proteins associated with "leaky" nephron segments (e.g., claudin-2). At the same time, apical trafficking of gp80/clusterin and gp114/CEACAM becomes randomized, basal-lateral delivery of Na,K-ATPase is reduced, and expression of the nonciliary apical protein gp135/podocalyxin is greatly decreased. However, ciliogenesis-impaired MDCK cells do not undergo continual junction remodeling, and mature cilia are not required for autotomy-associated remodeling events. Deciliation and epithelial remodeling may be mechanistically linked processes, because RNAi-mediated reduction of Exocyst subunit Sec6 inhibits ciliary shedding and specifically blocks deciliation-associated down-regulation of claudin-2 and gp135. We propose that ciliary autotomy represents a signaling pathway that impacts the organization and function of polarized epithelial cells.


Assuntos
Cílios/metabolismo , Células Epiteliais , Junções Íntimas/metabolismo , Animais , Antígenos CD/metabolismo , Transporte Biológico/fisiologia , Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Polaridade Celular , Clusterina/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Sialoglicoproteínas/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA