Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Res ; 226: 115594, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907342

RESUMO

Estuarine contamination by Microplastics (MPs) is a mater of serious concern since these areas offer the society valuable ecosystem, economic, and recreational services such as breeding and feeding ground for fish, carbon fixation, nutrients recycling and port development. The Meghna estuary, located along the Bengal delta coast, provides livelihoods for thousands of peoples in Bangladesh, and served as breeding ground for national fish, Hilsha shad. Therefore, knowledge and understanding on any kind of pollution including MPs of this estuary is essential. In this study, the abundance, characteristics and contamination assessment of MPs from the surface water of a Meghna estuary were investigated for the first time. The results demonstrated that MPs were present in all samples and the abundance ranged from 33.33 to 316.67 item/m3 with a mean value of 128.89 ± 67.94 item/m3. Morphological analyses resulted in four types of MPs such as fibers (87%), fragments (6%), foam (4%), and films (3%) with the majority of these being colored (62%) and smaller (<0.5 mm) in size (88%). On the other hand, FTIR analysis for chemical characteristics confirmed five types of polymers, including polythene (PE), polystyrene (PS), polythene terephthalate (PET), polypropylene (PP), and polyvinyl chloride (PVC). The area was determined to be moderately to severely contaminated with MPs based on contamination factor (CF) values (6.18 ± 2.08 to 2.50 ± 1.0) and the pollutant load index (PLI) value (1.94 ± 0.33) as these values were > 3-6 for CF, and >1 for PLI. These results can be utilized to develop policy for the protection of this important environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Microplásticos/análise , Plásticos , Estuários , Ecossistema , Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Peixes , Poluentes Ambientais/análise , Sedimentos Geológicos
2.
J Environ Manage ; 344: 118472, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384995

RESUMO

Microplastics (MPs) have gained a serious attention as an emerging contaminant throughout the world because of their persistence and possible risks to aquatic ecosystems and human well-being. However, knowledge on MPs contamination from sub-tropical coastal systems is limited, and no study has been conducted on the MPs contamination in sediment from one of the highest sediment-laden estuaries, Meghna River, in the world. This is the first study to examine the quantity, morpho-chemical characteristics and contamination risk level of MPs from this large scale river. MPs were extracted from the sediment samples of 10 stations along the banks of the estuary by density separation, and then characterized using a stereomicroscope and Fourier Transform Infrared (FTIR) spectroscopy. The incidence of MPs varied from 12.5 to 55 item/kg dry sediment with an average of 28.67 ± 10.80 item/kg. The majority (78.5%) of the MPs were under 0.5 mm in size, with fibers being the most (74.1%) prevalent MPs type. Polypropylene (PP) was found to be the predominant polymer (53.4%), followed by polyethylene (PE, 20%), polystyrene (PS, 13.3%), and polyvinyl chloride (PVC, 13.3%). The highest occurrence of PP indicted the MPs in the estuary might be originated from clothing and dying industries, fishing nets, food packages, and pulp industries. The sampling stations were contaminated with MPs as shown by the contamination factor (CF) values and pollutant load index (PLI), both of which were >1. This study exposed new insights on the status of MPs in the sediments of the Meghna River, laying the groundwork for future research. The findings will contribute to estimate the global share of MPs to the marine environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/química , Plásticos , Estuários , Ecossistema , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polipropilenos/análise
3.
Mymensingh Med J ; 26(3): 635-641, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28919621

RESUMO

Hypertension is a chronic and debilitating disease. Its complications give rise to cardiovascular diseases, stroke in Postmenopausal women. Estrogen deficiency that develops during menopause is likely the etiological factor for development of hypertension in postmenopausal women. Increased incidence of cardiovascular diseases in postmenopausal women may be due to hypertension caused by lower level of estrogen hormone. The study was carried out to observe the association of hypertension with serum estrogen level in postmenopausal women. This cross sectional study was conducted in the Department of Physiology, Dhaka Medical College, Dhaka, during the period of January 2011 to December 2011. A total number of 90 female subjects were selected from different areas of Dhaka city. Among them, 60 postmenopausal women with age ranging from 50 to 60 years were taken as study group and 30 apparently healthy premenopausal women with age ranging from 20 to 30 years were included as control group for comparison. Systolic blood pressure and diastolic blood pressure were recorded in both groups. Serum estrogen level was estimated in order to assess the hormonal level of both groups. Data was analyzed by Unpaired Student's 't' test and Pearson's co-efficient (r) test as applicable. The value of systolic blood pressure was higher in postmenopausal women than those of premenopausal women and result was statistically significant. The level of diastolic blood pressure was also significantly (p<0.001) higher in postmenopausal women in comparison to those of premenopausal women. In postmenopausal women serum estrogen level was lower than premenopausal women and serum estrogen level showed negative correlation with systolic and diastolic blood pressure levels. All these correlation were statistically non significant. Present study revealed that there is association of hypertension with serum estrogen level in postmenopausal women.


Assuntos
Estrogênios , Hipertensão , Pós-Menopausa , Bangladesh , Estudos Transversais , Estrogênios/sangue , Feminino , Humanos , Hipertensão/sangue , Pessoa de Meia-Idade
4.
Mar Pollut Bull ; 203: 116429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705003

RESUMO

This study aims to assess seasonal and spatial variations, contamination status, ecological risks, and metal sources (Ni, Pb, Cr, Cu, Mn, and Zn) in human-afforested mangrove sediments in a deltaic region. Five sampling locations were sampled during dry and wet seasons. Heavy metal concentrations followed the order: Mn > Zn > Ni > Cr > Cu > Pb. Metal loads, except Cu and Pb, were higher during the dry season, aligning with national and international recommendations. Sediment quality guidelines, contamination factor, geoaccumulation index, enrichment factors, and pollution load index indicated uncontaminated sediment in both seasons. Potential ecological risk assessment showed low risk conditions in all sites. However, modified hazard quotient indicated moderate pollution risk from all metals except Pb. Analysis suggests anthropogenic sources, particularly evident near shipbreaking yards in Sitakunda. While initially uncontaminated, ongoing metal influx poses a potential risk to mangrove ecosystems.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Metais Pesados/análise , Sedimentos Geológicos/química , Medição de Risco , Poluentes Químicos da Água/análise , Estações do Ano
5.
Biology (Basel) ; 13(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666872

RESUMO

The widespread occurrence of heavy metals in aquatic environments, resulting in their bioaccumulation within aquatic organisms like fish, presents potential hazards to human health. This study investigates the concentrations of five toxic heavy metals (Pb, Hg, Zn, Cu, and Cr) and their potential health implications in two economically important fish species (Otolithoides pama and Labeo bata) from a subtropical estuarine wetland system (Feni estuary, Bangladesh). Muscle and gill samples from 36 individual fish were analyzed using energy dispersive X-ray fluorescence (EDXRF). The results revealed that the average quantities of heavy metals in both fishes' muscle followed the declining order of Zn (109.41-119.93 mg/kg) > Cu (45.52-65.43 mg/kg) > Hg (1.25-1.39 mg/kg) > Pb (0.68-1.12 mg/kg) > Cr (0.31-5.82 mg/kg). Furthermore, Zn was found to be present in the highest concentration within the gills of both species. While the levels of Cu, Zn, and Cr in the fish muscle were deemed acceptable for human consumption, the concentrations of Pb and Hg exceeded the permissible limits (>0.5 mg/kg) for human consumption. Different risk indices, including estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and carcinogenic or target risk (TR), revealed mixed and varying degrees of potential threat to human health. According to the EDI values, individuals consuming these fish may face health risks as the levels of Zn, Cu, and Cr in the muscle are either very close to or exceed the maximum tolerable daily intake (MTDI) threshold. Nevertheless, the THQ and HI values suggested that both species remained suitable for human consumption, as indicated by THQ (<1) and HI (<1) values. Carcinogenic risk values for Pb, Cr, and Zn all remained within permissible limits, with TR values falling below the range of (10-6 to 10-4), except for Zn, which exceeded it (>10-4). The correlation matrix and multivariate principal component analysis (PCA) findings revealed that Pb and Cr primarily stemmed from natural geological backgrounds, whereas Zn, Cu, and Hg were attributed to human-induced sources such as agricultural chemicals, silver nanoparticles, antimicrobial substances, and metallic plating. Given the significance of fish as a crucial and nutritious element of a balanced diet, it is essential to maintain consistent monitoring and regulation of the levels and origins of heavy metals found within it.

6.
Environ Pollut ; 342: 123036, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030111

RESUMO

Microplastics (MPs) as hazardous contaminants has drawn the rapid attention of the general public due to their omnipresence and adverse impacts on ecosystems and human health. Despite this, understanding of MPs contamination levels in the estuarine ecosystems along the Bay of Bengal coast remains very limited. This research focused on the presence, spatial distribution, morpho-chemical characteristics and ecological implications of MPs in water and sediment from five key estuaries (Meghna, Karnaphuli, Matamuhuri, Bakkhali, and Naf rivers) within the Bengal delta. Out of the five estuaries, the Meghna exhibited the least amount of MPs in both surface water (150.00 ± 65.62 items/m3) and sediment (30.56 ± 9.34 items/kg). In contrast, the highest occurrence of MPs was recorded in Karnaphuli river water (350.00 ± 69.22 items/m3) and Matamuhuri river sediment (118.33 ± 26.81 items/kg). ANOVA indicated a statistically significant distinction (p < 0.01) among the examined estuaries. Most identified MPs were fibers and < 0.5 mm in size in both water and sediment samples. Transparent MPs were dominant in both water (42.28%) and sediment (45.22%). Besides violet, red, blue, pink and green colored MPs were also observed. Various polymer types, including PE, PP, PET, PS, Nylon, EVA, and ABS, were detected, with PE being the dominant one. Based on the polymer risk index (PHI), the estuaries were classified as hazard level V, signifying a severe level of MP contamination. However, the potential ecological hazardous index (PHI), potential ecological risk index (RI), and pollution load index (PLI) indicated moderate pollution levels. This study offers initial insights into the pollution caused by MPs in major estuaries of Bengal delta, which policymakers can utilize to implement suitable management strategies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Estuários , Baías/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polímeros , Água , Medição de Risco
7.
Biol Trace Elem Res ; 201(4): 1996-2010, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35543967

RESUMO

Contamination of fish species with potential toxic elements (PTEs) has caught the prime attention globally including Bangladesh. The present study enlightened on the accumulation, origin, and associated health implications of Mn, Fe, Cu, Zn, As, Hg, Pb, and Cr in ten varieties of fish species collected from the heavily polluted river Buriganga. Levels of PTEs in the studied fish species were found within the legislative value suggested by the World Health Organization (WHO) and Federal Environmental Protection Agency (FEPA) except for Fe, Cu, Zn, and Hg and can be assembled as Zn > Fe > Cu > Mn > Cr > Hg > As > Pb. The origin of PTEs in fish species apportioned mostly anthropogenic coupled with natural sources. Among the anthropogenic sources, industrial wastewater, recycling of leaded and lithium-ion batteries, metallurgical industries, shipyards, tannery, cosmetics, and chemical industries are the major contributors. This study identified children are exposed to As and Zn as their estimated targeted hazard quotient (THQ) value exceeded the threshold limit of safety, whereas adults are exposed to As only. The estimated, hazard index (HI) for children was found more than four times of adults; however, both the population groups are in vulnerable situation considering HI value (HI > 1), indicating possible non-carcinogenic health risk. Moreover, cumulative cancer risk TCR appraised that all the fish species exceeded the threshold limit of > 1E-03 for children and > 1E-04 for adults, which are level VII and level V contamination state for child and adult, respectively, and manifested consumption of the studied fishes arises a high probability for lifetime cancer risk.


Assuntos
Mercúrio , Metais Pesados , Adulto , Criança , Animais , Humanos , Metais Pesados/análise , Monitoramento Ambiental , Chumbo , Medição de Risco , Peixes
8.
Biol Trace Elem Res ; 201(6): 3031-3049, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35931926

RESUMO

Aquatic ecosystems are exceedingly contrived due to industrial dispenses, as a huge amount of toxicants especially heavy metals are released, causing drastic effects on aquatic lives and the human body. This study was performed to assess the quality of point-source industrial wastewater at varying percentage levels and their subsequent hazardous effect on fish (Anabas cobojius) and human health. The perceived value revealed that water quality parameters declined with the increase of wastewater concentration and trace metal evaluation index (TEI) ascertained a high level of water pollution due to Cr, Mn, Fe, Co, Ni, Cu, Zn, and As content for all percentages of wastewater. Concentration of wastewater and culture treatment duration largely impacted on fish mortality rate, body dis-pigmentation, mucus secretion rate, coagulation of mucus all over the body, and accumulation of heavy metals by fish samples. Metal pollution index (MPI) indicated low contamination of fish by the measured elements. Zn and Hg exceeded the threshold limit of target hazard quotient (THQ > 1) and contributed significantly to non-carcinogenic health implications for both the population group. Maximum hazard index in adults and children was observed to be 10.638 and 16.548 for 100% effluent at 96-h exposure period and the overall HI value manifested a very high to medium significant health effects regardless of age. Carcinogen Pb showed insignificant risk but Cr and Ni showed extremely high to medium-high risk for both the population group, and children were found more vulnerable receptors than adults. However, source of heavy metals in wastewater and fish samples stipulated anthropogenic sources.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Animais , Humanos , Águas Residuárias/toxicidade , Ecossistema , Monitoramento Ambiental , Medição de Risco , Metais Pesados/toxicidade , Metais Pesados/análise , Qualidade da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 891: 164369, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236455

RESUMO

The identification and description of novel plastic forms, such as pyroplastics and plastiglomerates, in coastal areas raised several concerns in the field of plastic pollution. Under the growing literature in the field, the present study preliminarily reports the occurrence of novel plastic forms on Cox's Bazar beach, Bangladesh. The description of the novel plastic forms agrees with the literature, mostly consisting of lithic and biogenic elements within a synthetic polymer matrix (HDPE, LDPE, PP, and PET identified). Several knowledge gaps regarding the interaction between the novel plastic forms and colonizing organisms, as well as the leaching rates of plastic additives, remain to be addressed as crucial points to understand their implications. Illegal waste dumping and burning were identified as the primary catalysts for the emergence of new plastic forms in Cox's Bazar. Overall, researchers must reach a baseline consensus regarding the methodologies and next steps in the field.


Assuntos
Poluição Ambiental , Plásticos , Bangladesh , Monitoramento Ambiental , Resíduos/análise
10.
Biol Trace Elem Res ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897594

RESUMO

The degradation of the environment due to numerous industrial practices has emerged as a major issue globally, particularly in a country like Bangladesh. The present study dispenses information about heavy metal (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) contamination in some frequently consumed vegetables, namely, ash pumpkin, potato, bitter gourd, buffalo spinach, snake gourd, and pointed gourd grown in an industrially prone location and their repercussion on consumers' health. Proton-induced X-ray emission (PIXE) technique was used as the major analytical tool to detect heavy metal concentrations. Mean concentration and the range of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in vegetables were detected (4.81 ± 2.79, 2.43-10.94), (497.57 ± 258.08, 181.24-886.67), (644.49 ± 298.40, 179.56-998.78), (38.88 ± 14.31, 18.88-60.12), (58.11 ± 12.58, 42.55-84.79), (137.24 ± 48.37, 71.99-208.98), (123.31 ± 63.62, 49.97-256.09), (8.09 ± 2.69, 4.29-14.94), and (4.16 ± 2.95, 1.22-9.98) mg/kg (dry weight basis), respectively. An extreme level of heavy metal contamination in vegetable samples was notified regarding the estimated metal pollution index (MPI) and Nemerow pollution index (P) value, which underpinned the health risk values. The estimated hazard index (HI) value stipulated high risk in all varieties of vegetables regardless of age group and cadmium (Cd) was found as the major contributor. Concerning the carcinogenic risk index (CR) for single elements, the value of Co, Ni, and Cr was approximated far above the USEPA threshold risk limit (CR>1E-04). Moreover, total carcinogenic risk (TCR) for all varieties of vegetables exceeded the safety threshold value for both the age group and children, in particular, were found most vulnerable. The outshot of the present study divulged associated health risks for the population group by the heavy metals via dietary intake of vegetables.

11.
Mar Pollut Bull ; 194(Pt B): 115337, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516095

RESUMO

Functioning of coastal wetland habitats is essential for the ecosystem integrity and sustainability of coastal development that enables human progress along transitional waterways. However, these habitats are continuously being affected by a variety of pollutants including metallic elements. In this study, seasonal variation, pollution status and ecological risks of heavy metals (Cr, Mn, Co, Ni, As, Cu, Zn and Pb) in surface sediment of the several types of coastal wetlands (estuaries, mudflats, sandy beaches, mangroves, and saltmarshes) were detected by using X-ray fluorescence (EDXRF) spectrometry. The results showed that the mean concentration level of metals in the surficial sediment samples followed the order of Cu (84.06 ± 8.60 µg/g) > Zn (51.00 ± 8.97 µg/g) > Mn (38.25 ± 11.34 µg/g) > Cr (3.52 ± 0.91 µg/g) > Pb (0.27 ± 0.13 µg/g) > Co (0.24 ± 0.13 µg/g) > As (0.21 ± 0.12 µg/g) > Ni (0.16 ± 0.08 µg/g). In comparison to the pre-monsoon period, the post-monsoon season had higher concentrations of heavy metals while the overall accumulation level of metals in the wetlands exhibited a pattern of estuarine wetland (28.47 ± 31.35 µg/g) > mangrove (22.23 ± 30.79 µg/g) > mudflat (21.79 ± 29.71 µg/g) > sandy beach (21.47 ± 28.15 µg/g) > saltmarsh (21.28 ± 30.02 µg/g). Although, the pollution assessment indices e.g., contamination factor (CF), degree of contamination (CD), geoaccumulation index (Igeo) and pollution load index (PLI) showed minimal levels of contamination in the studied sites, enrichment factor (EF) suggested greater enrichment of the metals in the pre-monsoon season but with the lowest ecological risk (RI < 40) in both seasons. Cluster analysis, principal component analysis (PCA), and Pearson's correlation were performed to determine the sources of heavy metals in collected samples which specified that Pb, As, Co and Ni predominantly came from natural sources whereas Cu, Mn, Zn and Cr emerged from anthropogenic sources such as industrial effluents, domestic wastewater, fertilizer or pesticide consumption on farmland along the riverbank, vessel emissions, and the confluence of tributary rivers.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Estações do Ano , Áreas Alagadas , Ecossistema , Baías , Chumbo/análise , Sedimentos Geológicos/química , Metais Pesados/análise , Medição de Risco , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
12.
Biology (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009771

RESUMO

Toxic metal pollution is a global issue, and the use of metal-accumulating plants to clean contaminated ecosystems is one of the most rapidly growing ecologically beneficial and cost-effective technologies. In this study, samples of sediment and three mangrove species (Excoecaria agallocha, Avicennia officinalis, Sonneratia apetala) were collected from the world's largest mangrove forest (along the Northern Bay of Bengal Coast) with the aim of evaluating metal concentrations, contamination degrees, and phytoremediation potentiality of those plants. Overall, the heavy metals concentration in sediment ranged from Cu: 72.41−95.89 mg/kg; Zn: 51.28−71.20 mg/kg; Fe: 22,760−27,470 mg/kg; Mn: 80.37−116.37 mg/kg; Sr: 167.92−221.44 mg/kg. In mangrove plants, the mean concentrations were in the order of E. agallocha > A. officinalis > S. apetala. The mean (± SD) concentration of each metal in the plant tissue (root) was found following the descending order of Fe (737.37 ± 153.06) > Mn (151.13 ± 34.26) > Sr (20.98 ± 6.97) > Cu (16.12 ± 4.34) > Zn (11.3 ± 2.39) mg/kg, whereas, in the leaf part, the mean concentration (mg/kg) of each metal found in the order of Fe (598.75 ± 410.65) > Mn (297.27 ± 148.11) > Sr (21.40 ± 8.71) > Cu (14.25 ± 2.51) > Zn (12.56 ± 2.13). The contamination factor (CF) values for the studied metals were in the descending order of Cu > Sr > Zn > Fe > Mn. The values of Igeo (Geo-accumulation index) and CF showed that the area was unpolluted to moderately polluted by Zn, Fe, Mn, Cu and Sr. Enrichment factor (EF) values in both sampling stations portrayed moderate to minimum enrichment. Phytoremediation potentiality of the species was assessed by bio-concentration factor (BCF) and translocation factor (TF). BCF values showed less accumulation for most of the heavy metals (<1) except Mn which was highly accumulated in all mangrove plants. The translocation factor (TF) values depicted that most of the heavy metals were strongly accumulated in plant tissues (>1). However, the BCF value depicts that Mn was highly bioconcentrated in E. agallocha, but the translocation on leaves tissue were minimum, which reveals that E. agallocha is phytoextractor for Mn, and accumulated in root tissues. All the examined plants can be used as phytoextractors as they have bioconcentration factors <1 and translocation factors >1. However, A. officinalis is clearly more suitable for metal extraction than S. apetala and E. agallocha in terms of hyper-metabolizing capabilities.

13.
Toxics ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35878252

RESUMO

Heavy metal (HM) contaminated soil can affect human health via ingestion of foodstuffs, inhalation of soil dust, and skin contact of soil. This study estimates the level of some heavy metals in soils of industrial areas, and their exposures to human body via dietary intake of vegetables and other pathways. Mean concentrations of Cr, Fe, Cu, Zn, As and Pb in the studied soil were found to be 61.27, 27,274, 42.36, 9.77, 28.08 and 13.69 mg/kg, respectively, while in vegetables the respective values were 0.53, 119.59, 9.76, 7.14, 1.34 and 2.69 mg/kg. Multivariate statistical analysis revealed that Fe, Cu, Zn, and Pb originated from lithogenic sources, while Cr and As are derived from anthropogenic sources. A moderate enrichment was noted by Cr, As, and Pb in the entire sampling site, indicating a progressive depletion of soil quality. The bioaccumulation factor (BCF) value for all the vegetables was recorded as BCF < 1; however, the metal pollution index (MPI) stipulates moderately high value of heavy metal accumulation in the vegetable samples. Hazard Index (HI) of >0.1 was estimated for adults but >1 for children by direct soil exposure, whereas HI < 1 for both children and adults via dietary intake of vegetables. Estimated Total carcinogenic risk (TCR) value due to soil exposure showed safe for adults but unsafe for children, while both the population groups were found to be safe via food consumption. Children are found more vulnerable receptors than adults, and health risks (carcinogenic and non-carcinogenic) via direct soil exposure proved unsafe. Overall, this study can be used as a reference for similar types of studies to evaluate heavy metal contaminated soil impact on the population of Bangladesh and other countries as well.

14.
Environ Sci Pollut Res Int ; 28(37): 51329-51341, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33982252

RESUMO

Chicken is one of the major protein sources and more affordable for the population of Bangladesh. Its quality monitoring is of high priority for food safety and public health risk assessment. This study determined metals (Fe, Cu, Zn, As, Ni, Cr, Sr, Hg, and Pb) in chickens from different farms of a high production area of Dhaka, Bangladesh, using an energy-dispersive X-ray fluorescence spectrometer to calculate the health risk through chickens consumption. In most cases, the toxic metals (As, Ni, Cr, Hg, and Pb) showed very high concentrations in different parts of chickens, especially livers that contained several times higher concentrations than the maximum allowable concentration (MAC). Analytical results showed some feed and water contain high concentrations of As and Cr that might be bioaccumulated in chicken. The estimated daily intake (EDI) for all metals was below the provisional tolerable daily intake (PTDI) values except As and Fe in few farms. Target hazard quotients (THQs) for most metals were less than 1 but THQs of As and Cr of few farms were higher than 1, indicating that the consumer would possess As- and Cr-based health hazards. Total target hazard quotient (TTHQ) of 42% for composite and 36% for body parts samples were > 1, suggesting potential health risk. The probabilistic risk and individual samples cancer risk (TR) were exceeded the acceptable level (10-4) for As and 75% of composite and 58% of body parts of chicken showed acceptable limit (10-6 to 10-4) for Pb, indicating that the peoples might be exposed to lifetime cancer risk in the long run.


Assuntos
Metais Pesados , Animais , Bangladesh , Galinhas , Monitoramento Ambiental , Contaminação de Alimentos/análise , Metais Pesados/análise , Medição de Risco
15.
Mar Pollut Bull ; 173(Pt B): 113160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34808545

RESUMO

The focus of this study was to determine the depth-wise variability of physicochemical properties (i.e., pH, TOC, TN, and EC), and heavy metals (i.e., Pb, Cu, Zn, As, and Cr) concentration, and the associated biological and ecological risks of the mangrove sediment. The accumulation of metal contents and the phytoremediation and phytoextraction were also investigated in a mangrove species, Acanthus ilicifolius. The mangrove sediment consists of a higher proportion of sand fraction (56.6-74.7%) followed by clay (10-28%) and silt (10.1-15. 7%) fractions. The concentrations (mg/kg) of Pb, Cu, Zn, As, and Cr were ranged from 22.05-34.3, 8.58-22.77, 85.07-114, 5.56-12.91, and 0.98-5.12 in all the sediment layers. The hierarchy of the mean metal concentration in sediment was Zn (102 mg/kg) > Pb (25.6 mg/kg) > Cu (14.8 mg/kg) > As (8.79 mg/kg) > Cr (2.74 mg/kg) respectively. The examined metal concentrations were below the respective average shale values (ASVs). The degree of environmental, ecological, and biological risks was minimal according to various pollution indices like geoaccumulation index (Igeo), contamination factor (CF), and pollution load index (PLI). According to sediment quality guidelines (SQGs), the adverse biological risk effect was not likely to occur. The result of the potential ecological risk index (PERI) demonstrated that the study area was in the low-risk condition as the corresponded RI value < 100. A combined influence of geogenic and anthropogenic factors was identified as the metal sources by multivariate analysis. The study found that the accumulation rate of the metal contents was higher in leaves than that of roots. The mean descending metal concentration values were Zn (107) > Pb (28. 7) > Cu (16.9) > As (11.2) > Cr (4.99) in leaves and Zn (104.32) > Pb (27.02) > Cu (15.29) > As (10.39) > Cr (3.80) in roots. The translocation and bioaccumulation factors of heavy metals suggested that the mangrove plant species, A. ilicifolius can be used for phytoremediation and phytoextraction since the bio-concentration factor and translocation factor > 1. The studied species exhibited the metal tolerance associated with two following strategies, metal exclusion, and metal accumulation. However, excess metal tolerance can impact the surrounding marine environment.


Assuntos
Acanthaceae , Metais Pesados , Poluentes Químicos da Água , Efeitos Antropogênicos , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA