Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165195

RESUMO

The Forming phenomenon is observed via in situ transmission electron microscopy in the Ag/Ta2 O5 /Pt system. The device is switched to a low-resistance state as the dual filament is connected to the electrodes. The results of energy dispersive spectrometer and electron energy loss spectroscopy analyses demonstrate that the filament is composed by a stack of oxygen vacancies and Ag metal.

2.
Nanotechnology ; 28(39): 395201, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28675756

RESUMO

ZnS nanowires were synthesized via a vapor-liquid-solid mechanism and then fabricated into a single-nanowire field-effect transistor by focused ion beam (FIB) deposition. The field-effect electrical properties of the FIB-fabricated ZnS nanowire device, namely conductivity, mobility and hole concentration, were 9.13 Ω-1 cm-1, 13.14 cm2 V-1 s-1and 4.27 × 1018 cm-3, respectively. The photoresponse properties of the ZnS nanowires were studied and the current responsivity, current gain, response time and recovery time were 4.97 × 106 A W-1, 2.43 × 107, 9 s and 24 s, respectively. Temperature-dependent I-V measurements were used to analyze the interfacial barrier height between ZnS and the FIB-deposited Pt electrode. The results show that the interfacial barrier height is as low as 40 meV. The energy-dispersive spectrometer elemental line scan shows the influence of Ga ions on the ZnS nanowire surface on the FIB-deposited Pt contact electrodes. The results of temperature-dependent I-V measurements and the elemental line scan indicate that Ga ions were doped into the ZnS nanowire, reducing the barrier height between the FIB-deposited Pt electrodes and the single ZnS nanowire. The small barrier height results in the FIB-fabricated ZnS nanowire device acting as a high-gain photosensor.

3.
Nano Lett ; 16(2): 1086-91, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26789624

RESUMO

Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated ß-Pt2Si/Si/θ-Ni2Si, ß-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

4.
Phys Chem Chem Phys ; 18(28): 18705-18, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27122222

RESUMO

Electrochemical and in situ X-ray absorption spectroscopy (XAS) measurements of various MnO2-coated carbon materials (MnO2/acid-functionalized carbon nanotubes (C-CNT), MnO2/reduced graphene oxide (RGO), and MnO2/RGO-Au electrodes) were conducted to evaluate the supercapacitive performances and electronic structures. MnO2 was deposited on the surface of C-CNT, RGO, and RGO-Au via a spontaneous redox reaction to facilitate the growth of the bulk form of MnO2/C-CNT and the surface forms of MnO2/RGO-based materials. Various forms of MnO2 on the carbon materials exhibited different charge/discharge behaviors. The specific capacitances of the MnO2/RGO and MnO2/RGO-Au electrodes at a current density of 1 A g(-1) were about 433 and 469 F g(-1), respectively; these values are about 1.5 times that of the MnO2/C-CNT (259 F g(-1)) electrode. Specific capacitances of 220 and 281 F g(-1) with retention rates of about 50-60% were obtained from MnO2/RGO and MnO2/RGO-Au, respectively, even at a high current density of 80 A g(-1). Experimental results revealed that the long-term electrochemical stability of the MnO2/RGO-based electrodes (with ∼90% retention) exceeded that of the MnO2/C-CNT electrode (with ∼60% retention) after 1000 cycles at a high scan rate of 80 A g(-1). This finding indicates that MnO2/RGO-based electrodes feature excellent cycling stability and rate capacity retention performance. To elucidate the atomic/electronic structures of the MnO2/C-CNT, MnO2/RGO, and MnO2/RGO-Au electrodes during the charge/discharge process, in situ XAS of the Mn K-edge was performed. The MnO2/RGO-based electrodes exhibited the least variations in the pre-peak intensity of the Mn K-edge during the charge/discharge process because a nano-network of MnO2 is homogeneously decorated on the outer surfaces of RGO-based electrodes to facilitate the growth of surface forms of MnO2/RGO and MnO2/RGO-Au. Analytical results further revealed suppression of changes in tunnel size and promotion of insertion/extraction behavior. This work, particularly the combination of cyclic voltammetry with in situ XAS measurements, will be of general value in the fields of nanomaterials and nanotechnology, and in their use in energy storage.

5.
Biosensors (Basel) ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36671916

RESUMO

Developing ultraflexible sensors using metal oxides is challenging due to the high-temperature annealing step in the fabrication process. Here, we demonstrate the ultraflexible relative humidity (RH) sensor on food plastic wrap by using 808 nm near-infrared (NIR) laser annealing for 1 min at a low temperature (26.2-40.8 °C). The wettability of plastic wraps coated with sol-gel solution is modulated to obtain uniform films. The surface morphology, local temperature, and electrical properties of the SnO2 resistor under NIR laser irradiation with a power of 16, 33, and 84 W/cm2 are investigated. The optimal device can detect wide-range RH from 15% to 70% with small incremental changes (0.1-2.2%). X-ray photoelectron spectroscopy reveals the relation between the surface binding condition and sensing response. Finally, the proposed sensor is attached onto the face mask to analyze the real-time human breath pattern in slow, normal, and fast modes, showing potential in wearable electronics or respiration monitoring.


Assuntos
Eletrônica , Óxidos , Humanos , Umidade , Monitorização Fisiológica , Plásticos
6.
Chemosphere ; 340: 139834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625493

RESUMO

The novel GdTaO4 phase exhibits good photocatalytic activity under visible light irradiation and holds great promise for the removal of organic dyes from industrial wastes. The GdTaO4 samples were synthesized using the hydrothermal and calcination process with different weight ratios of gadolinium nitrate hydrate (G) and tantalum pentachloride (T), and their structural studies confirmed the formation of the GdTaO4 (GT) phase. Among the samples, GT-4 (with a weight ratio of 4:1) exhibited the highest photocatalytic activity for the degradation of Methyl Orange (MO) dye under visible light irradiation. To enhance the photocatalytic performance, H2O2 was used as a green additive, and the photocatalytic abilities were examined by varying dye types and concentrations. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) revealed the local atomic and electronic structures around Ta and Gd and highlighted the contribution of Gd3+ to the GT system, which is a crucial factor in supporting the enhanced photocatalytic performance. Moreover, in-situ XAS at Gd M5-edge and O K-edge were examined under illumination/dark conditions to explore the electronic structures of photo-excited electron transition in the photocatalytic process. The analytical results provided strong evidence correlating the electronic structure and photocatalytic property of the GT. This study demonstrates that GdTaO4 exhibits good photocatalytic activity under visible light irradiation, making it a promising new Ta-based photocatalyst for the effective removal of organic dyes from industrial wastes.


Assuntos
Peróxido de Hidrogênio , Resíduos Industriais , Raios X , Luz , Corantes
7.
ACS Appl Mater Interfaces ; 15(36): 42868-42880, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647236

RESUMO

Usually, most studies focus on toxic gas and photosensors by using electrospinning and metal oxide polycrystalline SnO2 nanofibers (PNFs), while fewer studies discuss cell-material interactions and photoelectric effect. In this work, the controllable surface morphology and oxygen defect (VO) structure properties were provided to show the opportunity of metal oxide PNFs to convert photoenergy into bio-energy for bio-material applications. Using the photobiomodulation effect of defect-rich polycrystalline SnO2 nanofibers (PNFs) is the main idea to modulate the cell-material interactions, such as adhesion, growth direction, and reactive oxygen species (ROS) density. The VO structures, including out-of-plane oxygen defects (op-VO), bridge oxygen defects (b-VO), and in-plane oxygen defects (ip-VO), were studied using synchrotron analysis to investigate the electron transfer between the VO structures and conduction bands. These intragrain VO structures can be treated as generation-recombination centers, which can convert various photoenergies (365-520 nm) into different current levels that form distinct surface potential levels; this is referred to as the photoelectric effect. PNF conductivity was enhanced 53.6-fold by enlarging the grain size (410 nm2) by increasing the annealing temperature, which can improve the photoelectric effect. In vitro removal of reactive oxygen species (ROS) can be achieved by using the photoelectric effect of PNFs. Also, the viability and shape of human bone marrow mesenchymal stem cells (hMSCs-BM) were also influenced significantly by the photobiomodulation effect. The cell damage and survival rate can be prevented and enhanced by using PNFs; metal oxide nanofibers are no longer only environmental sensors but can also be a bio-material to convert the photoenergy into bio-energy for biomedical science applications.

8.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296846

RESUMO

Bismuth vanadate (BiVO4) has attracted substantial attention on account of its usefulness in producing hydrogen by photoelectrochemical (PEC) water splitting. The exploitation of BiVO4 for this purpose is yet limited by severe charge recombination in the bulk of BiVO4, which is caused by the short diffusion length of the photoexcited charge carriers and inefficient charge separation. Enormous effort has been made to improve the photocurrent density and solar-to-hydrogen conversion efficiency of BiVO4. This study demonstrates that modulating the composition of the electrode and the electronic configuration of BiVO4 by decoration with silver nanoparticles (Ag NPs) is effective in not only enhancing the charge carrier concentration but also suppressing charge recombination in the solar water splitting process. Decoration with a small number of Ag NPs significantly enhances the photocurrent density of BiVO4 to an extent that increases with the concentration of the Ag NPs. At 0.5% Ag NPs, the photocurrent density approaches 4.1 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE) under solar simulated light illumination; this value is much higher than the 2.3 mA cm-2 of pure BiVO4 under the same conditions. X-ray absorption spectroscopy (XAS) is utilized to investigate the electronic structure of pure BiVO4 and its modification by decoration with Ag NPs. Analytical results indicate that increased distortion of the VO4 tetrahedra alters the V 3d-O 2p hybridized states. Additionally, as the Ag concentration increases, the oxygen vacancy defects that act as recombination centers in BiVO4 are reduced. In situ XAS, which is conducted under dark and solar illumination conditions, reveals that the significantly enhanced PEC performance is attributable to the synergy of modulated atomic/electronic structures and the localized surface plasmon resonance effect of the Ag nanoparticles.

9.
ACS Appl Mater Interfaces ; 13(35): 41524-41536, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436855

RESUMO

Synchrotron-based X-ray spectroscopic and microscopic techniques are used to identify the origin of enhancement of the photoelectrochemical (PEC) properties of BiVO4 (BVO) that is coated on ZnO nanodendrites (hereafter referred to as BVO/ZnO). The atomic and electronic structures of core-shell BVO/ZnO nanodendrites have been well-characterized, and the heterojunction has been determined to favor the migration of charge carriers under the PEC condition. The variation of charge density between ZnO and BVO in core-shell BVO/ZnO nanodendrites with many unpaired O 2p-derived states at the interface forms interfacial oxygen defects and yields a band gap of approximately 2.6 eV in BVO/ZnO nanocomposites. Atomic structural distortions at the interface of BVO/ZnO nanodendrites, which support the fact that there are many interfacial oxygen defects, affect the O 2p-V 3d hybridization and reduce the crystal field energy 10Dq ∼2.1 eV. Such an interfacial atomic/electronic structure and band gap modulation increase the efficiency of absorption of solar light and electron-hole separation. This study provides evidence that the interfacial oxygen defects act as a trapping center and are critical for the charge transfer, retarding electron-hole recombination, and high absorption of visible light, which can result in favorable PEC properties of a nanostructured core-shell BVO/ZnO heterojunction. Insights into the local atomic and electronic structures of the BVO/ZnO heterojunction support the fabrication of semiconductor heterojunctions with optimal compositions and an optimal interface, which are sought to maximize solar light utilization and the transportation of charge carriers for PEC water splitting and related applications.

10.
Nano Lett ; 9(10): 3435-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19737004

RESUMO

We report an external force triggered field-effect transistor based on a free-standing piezoelectric fine wire (PFW). The device consists of an Ag source electrode and an Au drain electrode at two ends of a ZnO PFW, which were separated by an insulating polydimethylsiloxane (PDMS) thin layer. The working principle of the sensor is proposed based on the piezoelectric potential gating effect. Once subjected to a mechanical impact, the bent ZnO PFW cantilever creates a piezoelectric potential distribution across it width at its root and simultaneously produces a local reverse depletion layer with much higher donor concentration than normal, which can dramatically change the current flowing from the source electrode to drain electrode when the device is under a fixed voltage bias. Due to the free-standing structure of the sensor device, it has a prompt response time less than 20 ms and quite high and stable sensitivity of 2%/microN. The effect from contact resistance has been ruled out.

11.
Glob Chall ; 4(11): 2000041, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163225

RESUMO

The development of SnO2 and TiO2 polycrystalline nanofiber devices (PNFDs) has been widely researched as a method of protecting humans from household air pollution. PNFDs have three significant advantages. The nanofibers before the annealing process are polymer-rich materials, which can be used as particulate material (PM) filters. The multiporous nanofibers fabricated by the annealing process have numerous defects that can serve as generation-recombination centers for electron-hole pairs, enabling the PNFDs to serve as multiple-wavelength light (from 365 to 940 nm) detectors. Lastly, the numerous surface/interface defects can drastically enhance the toxic gas detection ability. The toxic gas detection range of PNFDs for CO(g) and NO(g) is from 400 to 50 ppm and 400 to 50 ppb, respectively. Quick response times and recovery properties are key parameters for commercial applications. The recovery time of NO(g) detection can be improved from 1 ks to 40 s and the PNFD operating temperature lowered to 50 °C. These results indicate that SnO2 and TiO2 PNFDs have good potential for commercialization and use as toxic gas and photon sensors in daily lives.

12.
ACS Appl Mater Interfaces ; 12(22): 24984-24991, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32367710

RESUMO

A metal-oxide material (indium zinc oxide [IZO]) device with near-infrared (NIR) laser annealing was demonstrated on both glass and bendable plastic substrates (polycarbonate, polyethylene, and polyethylene terephthalate). After only 60 s, the sheet resistance of IZO films annealed with a laser was comparable to that of thermal-annealed devices at temperatures in the range of 200-300 °C (1 h). XPS, ATR, and AFM were used to investigate the changes in the sheet resistance and correlate them to the composition and morphology of the thin film. Finally, the NIR-laser-annealed IZO films were demonstrated to be capable of detecting changes in humidity and serving as a highly sensitive gas sensor of hydrogen sulfide (in ppb concentration), with room-temperature operation on a bendable substrate.

13.
Sci Rep ; 10(1): 12725, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728171

RESUMO

A series of Eu3+-activated strontium silicate phosphors, Sr2SiO4:xEu3+ (SSO:xEu3+, x = 1.0, 2.0 and 5.0%), were synthesized by a sol-gel method, and their crystalline structures, photoluminescence (PL) behaviors, electronic/atomic structures and bandgap properties were studied. The correlation among these characteristics was further established. X-ray powder diffraction analysis revealed the formation of mixed orthorhombic α'-SSO and monoclinic ß-SSO phases of the SSO:xEu3+ phosphors. When SSO:xEu3+ phosphors are excited under ultraviolet (UV) light (λ = 250 nm, ~ 4.96 eV), they emit yellow (~ 590 nm), orange (~ 613 nm) and red (~ 652 and 703 nm) PL bands. These PL emissions typically correspond to 4f-4f electronic transitions that involve the multiple excited 5D0 → 7FJ levels (J = 1, 2, 3 and 4) of Eu3+ activators in the host matrix. This mechanism of PL in the SSO:xEu3+ phosphors is strongly related to the local electronic/atomic structures of the Eu3+-O2- associations and the bandgap of the host lattice, as verified by Sr K-edge and Eu L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure, O K-edge XANES and Kα X-ray emission spectroscopy. In the synthesis of SSO:xEu3+ phosphors, interstitial Eu2O3-like structures are observed in the host matrix that act as donors, providing electrons that are nonradiatively transferred from the Eu 5d and/or O 2p-Eu 4f/5d states (mostly the O 2p-Eu 5d states) to the 5D0 levels, facilitating the recombination of electrons that have transitioned from the 5D0 level to the 7FJ level in the bandgap. This mechanism is primarily responsible for the enhancement of PL emissions in the SSO:xEu3+ phosphors. This PL-related behavior indicates that SSO:xEu3+ phosphors are good light-conversion phosphor candidates for use in near-UV chips and can be very effective in UV-based light-emitting diodes.

14.
J Am Chem Soc ; 131(48): 17690-5, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19950994

RESUMO

A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32,000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 degrees C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems.

15.
Adv Mater ; 21(48): 4975-4978, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25376437

RESUMO

A nanowire-based nanosensor for detecting biologically and chemically charged molecules that is probe-free and highly sensitive is demonstrated. The device relies on the nonsymmetrical Schottky contact under reverse bias, and is much more sensitive than the device based on the symmetric ohmic contact. This approach serves as a guideline for designing more practical chemical and biochemical sensors.

16.
Sci Rep ; 9(1): 19691, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873168

RESUMO

Self-heating effect is a major limitation in achieving the full performance potential of high power GaN power devices. In this work, we reported a micro-trench structure fabricated on the silicon substrate of an AlGaN/GaN high electron mobility transistor (HEMT) via deep reactive ion etching, which was subsequently filled with high thermal conductive material, copper using the electroplating process. From the current-voltage characteristics, the saturation drain current was improved by approximately 17% with the copper filled micro-trench structure due to efficient heat dissipation. The IDS difference between the pulse and DC bias measurement was about 21% at high bias VDS due to the self-heating effect. In contrast, the difference was reduced to approximately 8% for the devices with the implementation of the proposed structure. Using Micro-Raman thermometry, we showed that temperature near the drain edge of the channel can be lowered by approximately ~22 °C in a HEMT operating at ~10.6 Wmm-1 after the implementation of the trench structure. An effective method for the improvement of thermal management to enhance the performance of GaN-on-Silicon HEMTs was demonstrated.

17.
ACS Sens ; 2(4): 531-539, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28723177

RESUMO

In this work, we successfully demonstrate a fast method to determine the fish freshness by using a sensing system containing an ultrasensitive amine gas sensor to detect the volatile amine gas from the raw fish meat. When traditional titration method takes 4 h and complicated steps to test the total volatile basic nitrogen (TVB-N) as a worldwide standard for fish freshness, our sensor takes 1 min to deliver an electrical sensing response that is highly correlated with the TVB-N value. When detecting a fresh fish with a TVB-N as 18 mg/100 g, the sensor delivers an effective ammonia concentration as 100 ppb. For TVB-N as 28-35 mg/100 g, a well-accepted freshness limit, the effective ammonia concentration is as 200-300 ppb. The ppb-regime sensitivity of the sensor and the humidity control in the sensing system are the keys to realizing fast and accurate detection. It is expected that the results in this report enable the development of on-site freshness detection and real-time monitoring in a fish factory.

18.
Nanoscale ; 7(47): 20126-31, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26567487

RESUMO

Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use.

19.
Nanoscale ; 7(5): 1725-35, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25511126

RESUMO

The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox reaction. C-CNT was found to have a lower edge plane structure and fewer defect sites than N-CNT. MnO2/C-CNT with a highly developed surface area exhibited favorable electrochemical performance. To determine the atomic/electronic structures of the MnO2/functionalized CNTs (MnO2/C-CNT and MnO/N-CNT) during the charge/discharge process, in situ X-ray absorption spectroscopy (XAS) measurements were made at the Mn K-edge. Both C-CNT and N-CNT are highly conductive. The effect of the scan rate on the capacitance behavior was also examined, revealing that the π* state of CNT and the size of the tunnels in pseudo-capacitor materials (which facilitate conduction and the transport of electrolyte ions) are critical for the capacitive performance, and their role depends on the scan rate. In the slow charge/discharge process, MnO2/N-CNT has a more symmetrical rectangular cyclic voltammetry (CV) curve. In the fast charge/discharge process, MnO2/C-CNT with a highly developed surface provides fast electronic and ionic channels that support a reversible faradaic redox reaction between MnO2 nanoflakes and the electrolyte, significantly enhancing its capacitive performance over that of MnO2/N-CNT. The MnO2/C-CNT architecture has great potential for supercapacitor applications. The information that was obtained herein helps to elucidate CNT surface modification and the design of the MnO2/functionalized CNT interface with a view for the further development of supercapacitors. This work, and especially the combination of CV with in situ XAS measurements, will be of value to readers with an interest in nanomaterial, nanotechnology and their applications in energy storage.

20.
Nanoscale Res Lett ; 9(1): 281, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24948898

RESUMO

In this work, we have demonstrated that amorphous ZnO nanobranches (a-ZnO NBs) could spontaneously react from the crystalline ZnO NWs (c-ZnO NWs) at specific humid environment. The spontaneous reaction mechanism and result can be analyzed by humidity controlling and optical microscope (OM)/scanning electron microscope (SEM)/Kelvin probe force microscopy (KPFM)/transmission electron microscopy (TEM) system. We can make the c-ZnO NWs spontaneous reaction happen at different humid environments and suppress the a-ZnO NBs spontaneous reaction by oxygen/hydrogen plasma surface passivation. The hydrogen plasma surface treatment also can improve the UV sensing sensitivity more than twofold. This work provides the mechanism and methods of the a-ZnO NBs spontaneous growth and offers the passivation treatment for strengthening and enhancing ZnO-based nanodevice application in humid environment and UV light detection, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA