Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
New Phytol ; 243(2): 738-752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822654

RESUMO

In the early 1900s, Erwin Baur established Antirrhinum majus as a model system, identifying and characterising numerous flower colour variants. This included Picturatum/Eluta, which restricts the accumulation of magenta anthocyanin pigments, forming bullseye markings on the flower face. We identified the gene underlying the Eluta locus by transposon-tagging, using an Antirrhinum line that spontaneously lost the nonsuppressive el phenotype. A candidate MYB repressor gene at this locus contained a CACTA transposable element. We subsequently identified plants where this element excised, reverting to a suppressive Eluta phenotype. El alleles inhibit expression of anthocyanin biosynthetic genes, confirming it to be a regulatory locus. The modes of action of Eluta were investigated by generating stable transgenic tobacco lines, biolistic transformation of Antirrhinum petals and promoter activation/repression assays. Eluta competes with MYB activators for promoter cis-elements, and also by titrating essential cofactors (bHLH proteins) to reduce transcription of target genes. Eluta restricts the pigmentation established by the R2R3-MYB factors, Rosea and Venosa, with the greatest repression on those parts of the petals where Eluta is most highly expressed. Baur questioned the origin of heredity units determining flower colour variation in cultivated A. majus. Our findings support introgression from wild species into cultivated varieties.


Assuntos
Antocianinas , Antirrhinum , Flores , Regulação da Expressão Gênica de Plantas , Fenótipo , Pigmentação , Proteínas de Plantas , Antirrhinum/genética , Flores/genética , Flores/fisiologia , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/metabolismo , Plantas Geneticamente Modificadas , Genes de Plantas , Nicotiana/genética , Regiões Promotoras Genéticas/genética , Elementos de DNA Transponíveis/genética , Alelos
2.
Plant Cell Environ ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899426

RESUMO

Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) causes a devastating canker disease in yellow-fleshed kiwifruit (Actinidia chinensis). The effector HopZ5, which is present in all isolates of Psa3 causing global outbreaks of pandemic kiwifruit canker disease, triggers immunity in Nicotiana benthamiana and is not recognised in susceptible A. chinensis cultivars. In a search for N. benthamiana nonhost resistance genes against HopZ5, we found that the nucleotide-binding leucine-rich repeat receptor NbPTR1 recognised HopZ5. RPM1-interacting protein 4 orthologues from N. benthamiana and A. chinensis formed a complex with NbPTR1 and HopZ5 activity was able to disrupt this interaction. No functional orthologues of NbPTR1 were found in A. chinensis. NbPTR1 transformed into Psa3-susceptible A. chinensis var. chinensis 'Hort16A' plants introduced HopZ5-specific resistance against Psa3. Altogether, this study suggested that expressing NbPTR1 in Psa3-susceptible kiwifruit is a viable approach to acquiring resistance to Psa3 and it provides valuable information for engineering resistance in otherwise susceptible kiwifruit genotypes.

3.
Proc Natl Acad Sci U S A ; 114(9): 2247-2252, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28202732

RESUMO

To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 µm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 µm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.


Assuntos
Cristalografia/métodos , Elétrons , Granulovirus/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular/química , Lasers , Cristalografia/instrumentação , Granulovirus/química , Modelos Moleculares , Progranulinas , Estrutura Secundária de Proteína , Síncrotrons
4.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 4): 465-71, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17372350

RESUMO

DsbC and DsbG are periplasmic disulfide-bond isomerases, enzymes that facilitate the folding of secreted proteins with multiple disulfide bonds by catalyzing disulfide-bond rearrangement. Both enzymes also have in vitro chaperone activity. The crystal structures of these molecules are similar and both are V-shaped homodimeric modular structures. Each dimeric molecule contains two separate C-terminal thioredoxin-fold domains, joined by hinged helical "stalks" to a single N-terminal dimerization domain formed from the N-terminal 67 residues of each monomer. In this work, the crystal structures of the separate DsbC and DsbG dimerization domains have been determined at resolutions of 2.0 and 1.9 A, respectively. The two structures are both similar to the corresponding domains in the full-length molecules, showing that the dimerization domains fold independently of the catalytic portions of the full-length molecules. Localized structural differences between DsbC and DsbG were observed near the dimer interface and may be relevant to the different functions of the two enzymes.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Isomerases de Dissulfetos de Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA