Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 630(8017): 762-768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778115

RESUMO

Kainate receptors, a subclass of ionotropic glutamate receptors, are tetrameric ligand-gated ion channels that mediate excitatory neurotransmission1-4. Kainate receptors modulate neuronal circuits and synaptic plasticity during the development and function of the central nervous system and are implicated in various neurological and psychiatric diseases, including epilepsy, depression, schizophrenia, anxiety and autism5-11. Although structures of kainate receptor domains and subunit assemblies are available12-18, the mechanism of kainate receptor gating remains poorly understood. Here we present cryo-electron microscopy structures of the kainate receptor GluK2 in the presence of the agonist glutamate and the positive allosteric modulators lectin concanavalin A and BPAM344. Concanavalin A and BPAM344 inhibit kainate receptor desensitization and prolong activation by acting as a spacer between the amino-terminal and ligand-binding domains and a stabilizer of the ligand-binding domain dimer interface, respectively. Channel opening involves the kinking of all four pore-forming M3 helices. Our structures reveal the molecular basis of kainate receptor gating, which could guide the development of drugs for treatment of neurological disorders.


Assuntos
Concanavalina A , Microscopia Crioeletrônica , Receptor de GluK2 Cainato , Ácido Glutâmico , Ativação do Canal Iônico , Modelos Moleculares , Domínios Proteicos , Receptores de Ácido Caínico , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptores de Ácido Caínico/ultraestrutura , Humanos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/química , Animais , Concanavalina A/química , Concanavalina A/metabolismo , Concanavalina A/farmacologia , Ligantes , Regulação Alostérica , Sítios de Ligação
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599106

RESUMO

The first step in gene expression in all organisms requires opening the DNA duplex to expose one strand for templated RNA synthesis. In Escherichia coli, promoter DNA sequence fundamentally determines how fast the RNA polymerase (RNAP) forms "open" complexes (RPo), whether RPo persists for seconds or hours, and how quickly RNAP transitions from initiation to elongation. These rates control promoter strength in vivo, but their structural origins remain largely unknown. Here, we use cryoelectron microscopy to determine the structures of RPo formed de novo at three promoters with widely differing lifetimes at 37 °C: λPR (t1/2 ∼10 h), T7A1 (t1/2 ∼4 min), and a point mutant in λPR (λPR-5C) (t1/2 ∼2 h). Two distinct RPo conformers are populated at λPR, likely representing productive and unproductive forms of RPo observed in solution studies. We find that changes in the sequence and length of DNA in the transcription bubble just upstream of the start site (+1) globally alter the network of DNA-RNAP interactions, base stacking, and strand order in the single-stranded DNA of the transcription bubble; these differences propagate beyond the bubble to upstream and downstream DNA. After expanding the transcription bubble by one base (T7A1), the nontemplate strand "scrunches" inside the active site cleft; the template strand bulges outside the cleft at the upstream edge of the bubble. The structures illustrate how limited sequence changes trigger global alterations in the transcription bubble that modulate the RPo lifetime and affect the subsequent steps of the transcription cycle.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Infecções por Escherichia coli/genética , Escherichia coli/genética , Regiões Promotoras Genéticas/genética , DNA Bacteriano/genética , Transcrição Gênica/genética
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916296

RESUMO

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Receptores de Detecção de Cálcio/genética , Transdução de Sinais
4.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559232

RESUMO

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand "read-out" extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.

5.
Nat Struct Mol Biol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951624

RESUMO

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand 'read-out' extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.

6.
Cell Rep ; 42(2): 112124, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857176

RESUMO

Kainate receptors (KARs) are a subtype of ionotropic glutamate receptors that control synaptic transmission in the central nervous system and are implicated in neurological, psychiatric, and neurodevelopmental disorders. Understanding the regulation of KAR function by small molecules is essential for exploring these receptors as drug targets. Here, we present cryoelectron microscopy (cryo-EM) structures of KAR GluK2 in complex with the positive allosteric modulator BPAM344, competitive antagonist DNQX, and negative allosteric modulator, antiepileptic drug perampanel. Our structures show that two BPAM344 molecules bind per ligand-binding domain dimer interface. In the absence of an agonist or in the presence of DNQX, BPAM344 stabilizes GluK2 in the closed state. The closed state is also stabilized by perampanel, which binds to the ion channel extracellular collar sites located in two out of four GluK2 subunits. The molecular mechanisms of positive and negative allosteric modulation of KAR provide a guide for developing new therapeutic strategies.


Assuntos
Anticonvulsivantes , Receptores de Ácido Caínico , Receptores de Ácido Caínico/metabolismo , Microscopia Crioeletrônica
7.
Front Cell Dev Biol ; 11: 1252953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033869

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.

8.
Nat Struct Mol Biol ; 30(10): 1481-1494, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653241

RESUMO

Synaptic complexes of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) with auxiliary subunits mediate most excitatory neurotransmission and can be targeted to treat neuropsychiatric and neurological disorders, including epilepsy. Here we present cryogenic-electron microscopy structures of rat GluA2 AMPAR complexes with inhibitory mouse γ5 and potentiating human cornichon-2 (CNIH2) auxiliary subunits. CNIH2 appears to destabilize the desensitized state of the complex by reducing the separation of the upper lobes in ligand-binding domain dimers. At the same time, CNIH2 stabilizes binding of polyamine spermidine to the selectivity filter of the closed ion channel. Nevertheless, CNIH2, and to a lesser extent γ5, attenuate polyamine block of the open channel and reduce the potency of the antiepileptic drug perampanel that inhibits the synaptic complex allosterically by binding to sites in the ion channel extracellular collar. These findings illustrate the fine-tuning of synaptic complex structure and function in an auxiliary subunit-dependent manner, which is critical for the study of brain region-specific neurotransmission and design of therapeutics for disease treatment.


Assuntos
Anticonvulsivantes , Poliaminas , Ratos , Camundongos , Animais , Humanos , Poliaminas/farmacologia , Anticonvulsivantes/farmacologia , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Nitrilas
9.
ACS Nano ; 17(18): 18470-18480, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37669408

RESUMO

Self-assembling virus-like particles (VLPs) can tolerate a wide degree of genetic and chemical manipulation to their capsid protein to display a foreign molecule polyvalently. We previously reported the successful incorporation of foreign peptide sequences in the junction loop and onto the C-terminus of PP7 dimer VLPs, as these regions are accessible for surface display on assembled capsids. Here, we report the implementation of a library-based approach to test the assembly tolerance of PP7 dimer capsid proteins to insertions or terminal extensions of randomized 15-mer peptide sequences. By performing two iterative rounds of assembly-based selection, we evaluated the degree of favorability of all 20 amino acids at each of the 15 randomized positions. Deep sequencing analysis revealed a distinct preference for the inclusion of hydrophilic peptides and negatively charged amino acids (Asp and Glu) and the exclusion of positively charged peptides and bulky and hydrophobic amino acid residues (Trp, Phe, Tyr, and Cys). Within the libraries tested here, we identified 4000 to 22,000 unique 15-mer peptide sequences that can successfully be displayed on the surface of the PP7 dimer capsid. Overall, the use of small initial libraries consisting of no more than a few million members yielded a significantly larger number of unique and assembly-competent VLP sequences than have been previously characterized for this class of nucleoprotein particle.


Assuntos
Aminoácidos , Peptídeos , Sequência de Aminoácidos , Capsídeo , Proteínas do Capsídeo/genética , Polímeros
10.
Nat Struct Mol Biol ; 29(7): 706-718, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35835865

RESUMO

The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Anquirinas , Proteína 1 de Troca de Ânion do Eritrócito/análise , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Anquirinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Espectrina
11.
ACS Omega ; 6(1): 85-102, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458462

RESUMO

Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

12.
bioRxiv ; 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32587972

RESUMO

Coronavirus disease 2019 ( COVID-19 ) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike ( S ) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F ™ and ExpiCHO-S ™ cells, two different cell lines selected for increased expression of secreted glycoproteins. We show that ExpiCHO-S ™ cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural ( cryo-EM ) characterization of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high quality S protein (non-aggregated, uniform material with appropriate biochemical and biophysical properties). Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs, and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA