Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Top Membr ; 92: 71-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007270

RESUMO

Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC ß subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.


Assuntos
Neoplasias , Canais de Sódio Disparados por Voltagem , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo , Neoplasias/metabolismo , Fenótipo , Sódio/metabolismo , Microambiente Tumoral
2.
Food Chem Toxicol ; 135: 111052, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31837349

RESUMO

Ethnobotanical evidences report the use of Rhododendron luteum Sweet (Ericaceae) in traditional medicinal systems. However, R. luteum has been associated to the occurrence of 'mad honey' poisoning. In the present study, the ethyl acetate, methanol, and water extracts of R. luteum were investigated for their in vitro antioxidant, enzyme inhibition, and cytotoxic properties. The cytotoxicity of R. luteum extracts on A549 lung cancer cell line was evaluated using MTT cell viability assay. Besides, HPLC-ESI-MSn approach was employed to elucidate the secondary metabolite profiles of R. luteum in order to establish any structure-activity relationship. Methanol and water extracts of R. luteum possessed highest radical scavenging and reducing properties while the ethyl acetate extract showed highest metal chelating properties. In terms of enzyme inhibition, the methanol and ethyl acetate extracts of R. luteum, possessing epigallocatechin, were active inhibitors of cholinesterase enzymes, α-glucosidase, and tyrosinase. Water extract caused growth inhibition of A549 cells with 207.2 µg/ml IC50 value. Though R. luteum has received little scientific attention due to the occurrence of grayanotoxins in the plant, however, data presented in this work shows promising biological activity of R. luteum and highlighted its role as a potential source of antioxidant and key enzyme inhibitors.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Rhododendron/química , Células A549 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos
3.
Antioxidants (Basel) ; 9(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397242

RESUMO

Sweet pepper is a typical type of Capsicum annuum from Abruzzo region, recognized as a traditional and local product, traditionally cultivated in the town of Altino (Abruzzo region, Italy). The aim of this study is to compare the sweet type of peppers from Altino with the hot pepper cultivated in the same area, in order to delineate their different phytochemical and biological profiles in vitro and in vivo. In this study, we elucidated their phytochemical composition, fatty acids composition and phenolic/flavonoid contents in extracts. Then antioxidant and enzyme inhibition assays were performed to evaluate their biological properties, together with in vitro cell assay and in vivo anti-inflammatory activity. Microwave (1000 mg/mL) extract of hot pepper showed the best inhibition value on in vitro cell growth assay; in fact, the number of survived cells was about 20% and 40% for microwave and Soxhlet extracts, respectively. In vivo anti-inflammatory assay revealed good activity for both species, which, when associated with in vitro cell inhibition results, could explain the protective effect on human prostatic hyperplasia.

4.
J Pharm Biomed Anal ; 174: 286-299, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185340

RESUMO

This study aimed to reveal chemical profiles and biological activities of ethyl acetate (EA), methanol (MeOH), and water extracts of Lotus corniculatus. Ethnobotanical reports have indicated the importance of phytochemical properties of the genus Lotus. In this study, the effects of medicinal plant extracts on antioxidant (DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays), enzyme inhibitory (on cholinesterase, tyrosinase, a-amylase and a-glucosidase), DNA protection and anticancer properties (including anti-proliferative, cell death and telomerase activity marker gene analysis, apoptotic DNA fragmentation analysis, cell migration test) were evaluated. According to chemical analysis, quercetin derivatives geraldol, isorhamnetin and kaempferol-O-coumaroylhexoside-O-deoxyhexoside isomers were dominant in the extracts. MeOH extracts showed the highest total flavonoids capacity with 21.13 mg RE/g. EA extract showed the strongest anti-amylase activity among the tested extracts. Water extract had the most protective activity against plasmid DNA. To indicate cell survival, MTT test was performed against human MCF-7 and MDA-MB-231 breast cancer cells. Half-maximal inhibitory concentration for cells were calculated and used for detection of mechanisms behind the cancer cell death. EA extract showed up-regulation of Bax proapoptotic gene and apoptotic DNA fragmentation activity on highly invasive MDA-MB-231 cells. Beclin-1 and LC3-II autophagy genes were higly expressed after treatment of MCF-7 cells with EA extracts. EA and MeOH extracts inhibited cell migration ability of both cancer cells. Linoleamide, was dominant component in EA extract and caused apoptosis on MDA-MB-231 breast cancer cells via increasing intranuclear Ca²+. The detailed mechanism behind the anticancer properties should be further investigated.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose , Autofagia , Neoplasias da Mama/tratamento farmacológico , Lotus/química , Extratos Vegetais/farmacologia , Acetatos/química , Amilases/antagonistas & inibidores , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Fragmentação do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Flavonoides/análise , Flavonoides/farmacologia , Humanos , Células MCF-7 , Melanoma Experimental , Metanol/química , Camundongos , Estresse Oxidativo , Água/química
5.
Food Res Int ; 115: 425-438, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599961

RESUMO

Phyllanthus phillyreifolius var. commersonii Müll. Arg is an endemic plant of Mauritius. To date, no study has been performed concerning its polyphenolic profile and pharmacological properties. In this study, a decoction (water), ethyl acetate and methanol extracts of the aerial parts of P. phillyreifolius, obtained from different extraction procedures (maceration and Soxhlet), were studied for antibacterial, antioxidant, anticancer, and enzyme inhibitory properties along with their polyphenolic profile. The ethyl acetate macerated extract showed high antibacterial activity against B. cereus (MIC = 0.293 mg/mL) and E. coli (MIC = 0.417 mg/mL) while S. epidermidis was most susceptible to the ethyl acetate-Soxhlet extract (MIC = 0.521 mg/mL). The methanol-Soxhlet extract displayed the most potent cupric and ferric reducing power, and metal chelating effect, while the macerated methanolic extract was the most effective DPPH and ABTS scavenger, and BChE inhibitor. Only the ethyl acetate-Soxhlet extract exhibited α-glucosidase inhibition. All extracts exhibited a strong anti-tyrosinase activity, which was further investigated by molecular docking and molecular dynamic. After 48 h exposure to the extracts for HeLa cell lines, the ethyl acetate-Soxhlet extract showed the highest inhibition (IC50 = 533.1 µg/mL) while the decoction extract was more cytotoxic to MDA-MB-231 cells (IC50 = 337.4 µg/mL). Treatment of cancer cell lines with all P. phillyreifolius extracts resulted in a time-dependent reduction of cell viability for HeLa and dose-and time-dependent reduction for MDA-MB-231. Gene expression ratio of Bcl-2 to Bax was higher for all Soxhlet-extracts. Total phenolics (TPC) and flavonoids (TFC) content were highest in the decoction and methanol-Soxhlet extract, respectively (122.43 mg GAE/g extract and 31.28 mg RE/g extract, respectively). The extracts were abundant in ellagitannins, although phenolic acids and flavonoids were also detected. Granatin B was detected for the first time in Phyllanthus species. Overall, the aerial parts of P. phillyreifolius exemplify a potent reservoir of bioactive phytochemicals for therapeutic applications.


Assuntos
Fenóis/análise , Fenóis/farmacologia , Phyllanthus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/análise , Antineoplásicos/análise , Antioxidantes/análise , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/análise , Flavonoides/análise , Células HeLa , Humanos , Taninos Hidrolisáveis/análise , Maurício , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monofenol Mono-Oxigenase/efeitos dos fármacos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia
6.
Food Chem Toxicol ; 120: 172-182, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30008431

RESUMO

This study aims to establish the biological and chemical profile of Asphodeline liburnica (Scop.) Rchb. root. The antioxidant, antimicrobial, enzyme inhibitory, DNA protection, apoptotic DNA ladder fragmentation analysis, and anti-proliferative of A. liburnica were established using standard assays. In silico study was also performed to understand interactions between quantified anthraquinones and key enzymes of clinical relevance. Total phenolic and flavonoid contents were found to be 9.67 mgGAE/g and 1.48 mgRE/g extract, respectively. Chrysophanol was detected as a major anthraquinone. The extract exhibited radical scavenging ability against DPPH and ABTS with values of 13.23 and 66.99 mgTE/g extract, respectively. Good inhibitory activity against tyrosinase was recorded. In silico experiments showed that the anthraquinones were able to establish coordinative bonds with the copper atoms present in the enzymatic cavity of tyrosinase. MTT cell viability test on MDA-MB-231 cells showed that at 0.1 and 1 µg of extracts induced anti-proliferative effect. Apoptotic DNA fragmentation analysis indicated nuclear condensation resulting in DNA fragmentation, which exhibited apoptotic cell death in the presence of A. liburnica. This study has provided insights on the potential usage of A. liburnica which could open new avenues for research and stimulate future interest for the development of safe novel biopharmaceuticals.


Assuntos
Antraquinonas/toxicidade , Antraquinonas/uso terapêutico , Asphodelaceae/química , Extratos Vegetais/toxicidade , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Antraquinonas/química , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
7.
Front Pharmacol ; 8: 600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919860

RESUMO

The genus Ononis has important value as traditional drugs and foods. In the present work, we aimed to assess the chemical profiles and biological effects of Ononis natrix subsp. hispanica extracts (ethyl acetate, methanol, and water). For chemical profile, total and individual phenolic components were detected. For biological effects, antioxidant (DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays), enzyme inhibitory (against cholinesterase, tyrosinase, α-amylase and α-glucosidase), antimicrobial, DNA protection and cytotoxic abilities were tested. The predominant phenolics were apigenin, luteolin, and quercetin in the tested extracts. Generally, the ethyl acetate and methanol extracts were noted as the most active in the antioxidant and enzyme inhibitory assays. Water extract with different concentrations indicated high level of DNA protection activity. Methanol and ethyl acetate extracts showed antibacterial effect against to Staphylococcus aureus and Staphylococcus epidermidis strains. The cytotoxic effects of O. natrix subsp. hispanica extracts on the survival of HeLa and PC3 cells were determined by MTT cell viability assay. Water and methanol extracts caused initiation of apoptosis for PC3 cell line. Furthermore, molecular docking was performed to better understand interactions between dominant phenolic compounds and selected enzymes. Our results clearly indicate that O. natrix subsp. hispanica could be considered a potential candidate for designing novel pharmaceuticals, cosmeceuticals and nutraceuticals.

8.
Oncol Lett ; 12(1): 323-330, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347145

RESUMO

Glucose-regulated protein 78 kDa/binding immunoglobulin protein (GRP78/BIP) is a well-known endoplasmic reticulum (ER) chaperone protein regulating ER stress by facilitating protein folding, assembly and Ca2+ binding. GRP78 is also a member of the heat shock protein 70 gene family and induces tumor cell survival and resistance to chemotherapeutics. Bortezomib is a highly specific 26S proteasome inhibitor that has been approved as treatment for patients with multiple myeloma. The present study first examined the dose- and time-dependent effects of bortezomib on GRP78 expression levels in the highly metastatic mouse breast cancer 4T1 cell line using western blot analysis. The analysis results revealed that GRP78 levels were significantly increased by bortezomib at a dose as low as 10 nM. Time-dependent experiments indicated that the accumulation of GRP78 was initiated after a 24 h incubation period following the addition of 10 nM bortezomib. Subsequently, the present study determined the half maximal inhibitory concentration of intracellular calcium chelator BAPTA-AM (13.6 µM) on 4T1 cells. The combination effect of BAPTA-AM and bortezomib on the 4T1 cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and WST-1 assays and an iCELLigence system. The results revealed that the combination of 10 nM bortezomib + 5 µM BAPTA-AM is more cytotoxic compared with monotherapies, including 10 nM bortezomib, 1 µM BAPTA-AM and 5 µM BAPTA-AM. In addition, the present results revealed that bortezomib + BAPTA-AM combination causes cell death through the induction of apoptosis. The present results also revealed that bortezomib + BAPTA-AM combination-induced apoptosis is associated with a clear increase in the phosphorylation of stress-activated protein kinase/Jun amino-terminal kinase SAPK/JNK. Overall, the present results suggest that bortezomib and BAPTA-AM combination therapy may be a novel therapeutic strategy for breast cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA