Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 24218, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414941

RESUMO

Neutron imaging has gained significant importance as a material characterisation technique and is particularly useful to visualise hydrogenous materials in objects opaque to other radiations. Fields of application include investigations of hydrogen in metals as well as metal corrosion, thanks to the fact that neutrons can penetrate metals better than e.g. X-rays and are highly sensitive to hydrogen. However, at interfaces refraction effects sometimes obscure the attenuation image, which is used for hydrogen quantification. Refraction, a differential phase effect, diverts the neutron beam away from the interface in the image leading to intensity gain and intensity loss regions, which are superimposed to the attenuation image, thus obscuring the interface region and hindering quantitative analyses of e.g. hydrogen content in the vicinity of the interface. For corresponding effects in X-ray imaging, a phase filter approach was developed and is generally based on transport-of-intensity considerations. Here, we compare such an approach, that has been adapted to neutrons, with another simulation-based assessment using the ray-tracing software McStas. The latter appears superior and promising for future extensions which enable fitting forward models via simulations in order to separate phase and attenuation effects and thus pave the way for overcoming quantitative limitations at refracting interfaces.

2.
Sci Rep ; 13(1): 11176, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429919

RESUMO

This paper reports on a superhydrophilic to superhydrophobic transformation of TiO2 nanoparticles doped zinc phosphate coating systems when a hydrophobic agent is applied. The objective of the reported research was to demonstrate the feasibility of a neutron imaging technique for evaluating the performance of the proposed nano-coating system and reveal the differences in water ingress mechanisms which are specific to plain, superhydrophilic, overhydrophobic, and superhydrophobic specimens. The engineered nano-coatings were designed to improve hydrophobic response with inducing the required roughness pattern and introducing the photocatalytic performance. The effectiveness of the coatings was assessed using high-resolution neutron imaging (HR-NI), SEM, CLSM, and XRD techniques. High-resolution neutron imaging revealed that the superhydrophobic coating effectively prevents water ingress into the porous ceramic substrate, whereas water imbibition was observed for superhydrophilic coating during the test duration. The moisture transport kinetics was modeled based on the Richards equation for plain ceramic and superhydrophilic specimens using obtained penetration depth values from HR-NI. SEM, CLSM, and XRD studies confirm the desired TiO2-doped zinc phosphate coatings with increased surface roughness, photocatalytic reactivity, and chemical bonding. The research results demonstrated that a two-layer superhydrophobic system is capable of creating effective water barriers on the surface with contact angles of 153°, which remained effective even after surface damage.

3.
Materials (Basel) ; 14(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772101

RESUMO

AA1050 Al alloy samples were shot-peened using stainless-steel shots at shot peening (SP) pressures of 0.1 and 0.5 MPa and surface cover rates of 100% and 1000% using a custom-designed SP system. The hardness of shot-peened samples was around twice that of unpeened samples. Hardness increased with peening pressure, whereas the higher cover rate did not lead to hardness improvement. Micro-crack formation and embedment of shots occurred by SP, while average surface roughness increased up to 9 µm at the higher peening pressure and cover rate, indicating surface deterioration. The areal coverage of the embedded shots ranged from 1% to 5% depending on the peening parameters, and the number and the mean size of the embedded shots increased at the higher SP pressure and cover rate. As evidenced and discussed through the surface and cross-sectional SEM images, the main deformation mechanisms during SP were schematically described as crater formation, folding, micro-crack formation, and material removal. Overall, shot-peened samples demonstrated improved mechanical properties, whereas sample surface integrity only deteriorated notably during SP at the higher pressure, suggesting that selecting optimal peening parameters is key to the safe use of SP. The implemented methodology can be used to modify similar soft alloys within confined compromises in surface features.

4.
Materials (Basel) ; 13(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008035

RESUMO

Ti6Al4V alloy was shot peened by using stainless-steel shots with different sizes (0.09-0.14 mm (S10) and 0.7-1.0 mm (S60)) for two durations (5 and 15 min) using a custom-designed peening system. The shot size was the main parameter modifying the roughness (0.74 µm for S10 vs. 2.27 µm for S60), whereas a higher peening time slightly increased roughness. Hardness improved up to approximately 35% by peening with large shots, while peening time was insignificant in hardness improvement. However, longer peening duration with large shots led to an unwanted formation of micro-cracks and delamination on the peened surfaces. After dry sliding wear tests, the mass loss of peened samples (S60 for 15 min) was 25% higher than that of un-peened samples, while the coefficient of friction decreased by 12%. Plastically deformed regions and micro-scratches were observed on the worn surfaces, which corresponds to mostly adhesive and abrasive wear mechanisms. The present study sheds light on how surface, subsurface and tribological properties of Ti6Al4V vary with shot peening and peening parameters, which paves the way for the understanding of the mechanical, surface, and tribological behavior of shot peened Ti6Al4V used in both aerospace and biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA