RESUMO
BACKGROUND: In June 2019, a patient presented with persistent fever and multiple organ dysfunction after a tick bite at a wetland park in Inner Mongolia. Next-generation sequencing in this patient revealed an infection with a previously unknown orthonairovirus, which we designated Wetland virus (WELV). METHODS: We conducted active hospital-based surveillance to determine the prevalence of WELV infection among febrile patients with a history of tick bites. Epidemiologic investigation was performed. The virus was isolated, and its infectivity and pathogenicity were investigated in animal models. RESULTS: WELV is a member of the orthonairovirus genus in the Nairoviridae family and is most closely related to the tickborne Hazara orthonairovirus genogroup. Acute WELV infection was identified in 17 patients from Inner Mongolia, Heilongjiang, Jilin, and Liaoning, China, by means of reverse-transcriptase-polymerase-chain-reaction assay. These patients presented with nonspecific symptoms, including fever, dizziness, headache, malaise, myalgia, arthritis, and back pain and less frequently with petechiae and localized lymphadenopathy. One patient had neurologic symptoms. Common laboratory findings were leukopenia, thrombocytopenia, and elevated d-dimer and lactate dehydrogenase levels. Serologic assessment of convalescent-stage samples obtained from 8 patients showed WELV-specific antibody titers that were 4 times as high as those in acute-phase samples. WELV RNA was detected in five tick species and in sheep, horses, pigs, and Transbaikal zokors (Myospalax psilurus) sampled in northeastern China. The virus that was isolated from the index patient and ticks showed cytopathic effects in human umbilical-vein endothelial cells. Intraperitoneal injection of the virus resulted in lethal infections in BALB/c, C57BL/6, and Kunming mice. The Haemaphysalis concinna tick is a possible vector that can transovarially transmit WELV. CONCLUSIONS: A newly discovered orthonairovirus was identified and shown to be associated with human febrile illnesses in northeastern China. (Funded by the National Natural Science Foundation of China and the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences.).
Assuntos
Febre , Nairovirus , Picadas de Carrapatos , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Antivirais/sangue , China/epidemiologia , Febre/diagnóstico , Febre/epidemiologia , Febre/virologia , Nairovirus/genética , Nairovirus/isolamento & purificação , Nairovirus/patogenicidade , Filogenia , Picadas de Carrapatos/complicações , Picadas de Carrapatos/virologia , Prevalência , Modelos Animais de Doenças , Ovinos , Cavalos , Suínos , Lactente , Pré-Escolar , Criança , Adolescente , Idoso de 80 Anos ou maisRESUMO
Cell therapy based on mesenchymal stem cells (MSCs) alleviate muscle atrophy caused by diabetes and aging; however, the impact of human umbilical cord mesenchymal stem cells on muscle atrophy following nerve injury and the underlying mechanisms remain unclear. In this study, we evaluated the therapeutic efficacy of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (hucMSC-EXOs) for muscle atrophy following nerve injury and identified the underlying molecular mechanisms. Sciatic nerve crush injury in rats and the induction of myotubes in L6 cells were used to determine the ameliorating effect of hucMSCs and hucMSC-EXOs on muscle atrophy. Q-PCR and Western blot analyses were used to measure the expression of muscle-specific ubiquitin ligases Fbxo32 (Atrogin1, MAFbx) and Trim63 (MuRF-1). Dual-luciferase reporter gene experiments were conducted to validate the direct binding of miRNAs to their target genes. Local injection of hucMSCs and hucMSC-EXOs mitigated atrophy in the rat gastrocnemius muscle following sciatic nerve crush injury. In vitro, hucMSC-EXOs alleviated atrophy in L6 myotubes. Mechanistic analysis indicated the upregulation of miR-23b-3p levels in L6 myotubes following hucMSC-EXOs treatment. MiR-23b-3p significantly inhibited the expression of its target genes, Fbxo32 and Trim63, and suppressed myotube atrophy. Notably, an miR-23b-3p inhibitor reversed the inhibitory effect of miR-23b-3p on myotube atrophy in vitro. These results suggest that hucMSCs and their exosomes alleviate muscle atrophy following nerve injury. MiR-23b-3p in exosomes secreted by hucMSCs contributes to this mechanism by inhibiting the muscle-specific ubiquitination ligases Fbxo32 and Trim63.
Assuntos
Exossomos , Células-Tronco Mesenquimais , Atrofia Muscular , Traumatismos dos Nervos Periféricos , Ubiquitina-Proteína Ligases , Exossomos/metabolismo , Animais , Atrofia Muscular/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Atrofia Muscular/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células-Tronco Mesenquimais/metabolismo , Ratos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Cordão Umbilical/citologia , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Masculino , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologiaRESUMO
CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening. Our findings show that p21 activation is significantly more pronounced with double-stranded oligodeoxynucleotides (ODNs) or adeno-associated viral vectors (AAVs) compared to their single-stranded counterparts. Lentiviral vectors (LVs) and integrase-defective lentiviral vectors (IDLVs) induce notably lower p21 expression than AAVs, suggesting their suitability for gene therapy in sensitive cells such as hematopoietic stem cells or immune cells. Additionally, specific viral promoters like SFFV significantly amplify p21 activation, emphasizing the critical role of promoter selection in vector development. Thus, the p21-mNeonGreen reporter iPSC line is a valuable tool for assessing the potential adverse effects of gene editing methodologies and vectors.
RESUMO
BACKGROUND: Peripheral nerve injury (PNI) presents a significant clinical challenge, leading to enduring sensory-motor impairments. While mesenchymal stem cell (MSC)-based therapy holds promise for PNI treatment, enhancing its neurotrophic effects remains crucial. Platelet-rich plasma-derived exosomes (PRP-Exo), rich in bioactive molecules for intercellular communication, offer potential for modulating cellular biological activity. METHODS: PRP-Exo was isolated, and its impact on MSC viability was evaluated. The effects of PRP-Exo-treated MSCs (MSCPExo) on Schwann cells (SCs) from injured sciatic nerves and human umbilical vein endothelial cells (HUVECs) were assessed. Furthermore, the conditioned medium from MSCPExo (MSCPExo-CM) was analyzed using a cytokine array and validated through ELISA and Western blot. RESULTS: PRP-Exo enhanced MSC viability. Coculturing MSCPExo with SCs ameliorated apoptosis and promoted SC proliferation following PNI. Similarly, MSCPExo-CM exhibited pro-proliferative, migratory, and angiogenic effects. Cytokine array analysis identified 440 proteins in the MSCPExo secretome, with 155 showing upregulation and 6 showing downregulation, many demonstrating potent pro-regenerative properties. ELISA confirmed the enrichment of several angiotrophic and neurotrophic factors. Additionally, Western blot analysis revealed the activation of the PI3K/Akt signaling pathway in MSCPExo. CONCLUSION: Preconditioning MSCs with PRP-Exo enhanced the paracrine function, particularly augmenting neurotrophic and pro-angiogenic secretions, demonstrating an improved potential for neural repair.
Assuntos
Exossomos , Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Humanos , Exossomos/metabolismo , Células Endoteliais , Fosfatidilinositol 3-Quinases/metabolismo , Citocinas/metabolismo , Regeneração NervosaRESUMO
The aim of this study was to evaluate the role of angiotensin-converting enzyme 1 (ACE1) in H2O2-induced trophoblast cell injury and the potential molecular mechanisms. Oxidative stress was modeled by exposing HTR-8/SVneo cells to 200 µM H2O2. Western blot and real-time quantitative PCR methods were used to detect protein and mRNA expression level of ACE1 in chorionic villus tissue and trophoblast HTR-8/SVneo cell. Inhibition of ACE1 expression was achieved by transfection with small interfering RNA. Then flow cytometry, Cell Counting Kit-8, and Transwell assay was used to assess apoptosis, viability, and migration ability of the cells. Reactive oxygen species (ROS) were detected by fluorescent probes, and malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) activities were determined by corresponding detection kits. Angiotensin-converting enzyme 1 expression was upregulated in chorionic villus tissue of patients with missed abortion (MA) compared with individuals with normal early pregnancy abortion. H2O2 induced elevated ACE1 expression in HTR-8/SVneo cells, promoted apoptosis, and inhibited cell viability and migration. Knockdown of ACE1 expression inhibited H2O2-induced effects to enhance cell viability and migration and suppress apoptosis. Additionally, H2O2 stimulation caused increased levels of ROS and MDA and decreased SOD and GSH activity in the cells, whereas knockdown of ACE1 expression led to opposite changes of these oxidative stress indicators. Moreover, knockdown of ACE1 attenuated the inhibitory effect of H2O2 on the Nrf2/HO-1 pathway. Angiotensin-converting enzyme 1 was associated with MA, and it promoted H2O2-induced injury of trophoblast cells through inhibiting the Nrf2 pathway. Therefore, ACE1 may serve as a potential therapeutic target for MA.
Assuntos
Aborto Retido , Peróxido de Hidrogênio , Peptidil Dipeptidase A , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Feminino , Gravidez , Aborto Retido/genética , Aborto Retido/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Adulto , Movimento Celular/efeitos dos fármacosRESUMO
Poultry, a vital economic animal, provide a high-quality protein source for human nutrition. Over the past decade, the poultry industry has witnessed substantial achievements in breeding, precision feeding, and welfare farming. However, there are still many challenges restricting the sustainable development of the poultry industry. First, overly focused breeding strategies on production performance have been shown to induce metabolic diseases in poultry. Second, a lack of robust methods for assessing the nutritional requirements poses a challenge to the practical implementation of precision feeding. Third, antibiotic alternatives and feed safety management remain pressing concerns within the poultry industry. Lastly, environmental pollution and inadequate welfare management in farming have a negative effect on poultry health. Despite numerous proposed strategies and innovative approaches, each faces its own set of strengths and limitations. In this review, we aim to provide a comprehensive understanding of the poultry industry over the past decade, by examining its achievements, challenges, and strategies, to guide its future direction.
RESUMO
BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) concentrations decline with age, and boosting it can improve multi-organ functions and lifespan. OBJECTIVES: Nicotinamide mononucleotide (NMN) is a natural NAD+ precursor with the ability to enhance NAD+ biosynthesis. Numerous studies have shown that a high-fat diet (HFD) can accelerate the process of aging and many diseases. We hypothesized that long-term administration of NMN could exert protective effects on adipose, muscle, and kidney tissues in mice on an HFD act by affecting the autophagic pathway. METHODS: Mice at 14 mo of age were fed an HFD, and NMN was added to their drinking water at a dose of 400 mg/kg for 7 mo. The locomotor ability of the mice was assessed by behavioral experiments such as grip test, wire hang test, rotarod, and beam-walking test. At the end of the behavioral experiments, the pathological changes of each peripheral organ and the expression of autophagy-related proteins, as well as the markers of the senescence and inflammaging were analyzed by pathological staining, immunohistochemical staining, and western blotting, respectively. RESULTS: We found that NMN supplementation increased NAD+ concentrations and ultimately attenuated age- and diet-related physiological decline in mice. NMN inhibited HFD-induced obesity, promoted physical activity, improved glucose and lipid metabolism, improved skeletal muscle function and renal damage, as well as mitigated the senescence and inflammaging as demonstrated by p16, interleukin 1ß, and tumor necrosis factor α concentrations. In addition, the present study further emphasizes the potential mechanisms underlying the bidirectional relationship between NAD+ and autophagy. We detected changes in autophagy concentrations in various tissue organs, and NMN may play a protective role by inhibiting excessive autophagy induced by HFD. CONCLUSIONS: Our findings demonstrated that NMN administration attenuated HFD-induced metabolic disorders and physiological decline in aging mice.
RESUMO
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
RESUMO
The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.
Assuntos
Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Antioxidantes , Intestinos , Intestino DelgadoRESUMO
Nitrous oxide (N2O) is a potent greenhouse gas with various production pathways. N2O reductase (N2OR) is the primary N2O sink, but the distribution of its gene clades, typically nosZI and atypically nosZII, along urbanization gradients remains poorly understood. Here we sampled soils from forests, parks, and farmland across eight provinces in eastern China, using high-throughput sequencing to distinguish between two N2O-reducing bacteria clades. A deterministic process mainly determined assemblies of the nosZI communities. Homogeneous selection drove nosZI deterministic processes, and both homogeneous and heterogeneous selection influenced nosZII. This suggests nosZII is more sensitive to environmental changes than nosZI, with significant changes in community structure over time or space. Ecosystems with stronger anthropogenic disturbance, such as urban areas, provide diverse ecological niches for N2O-reducing bacteria (especially nosZII) to adapt to environmental fluctuations. Structural equation modeling (SEM) and correlation analyses revealed that pH significantly influences the community composition of both N2O-reducing bacteria clades. This study underscores urbanization's impact on N2O-reducing bacteria in urban soils, highlighting the importance of nosZII and survival strategies. It offers novel insights into the role of atypical denitrifiers among N2O-reducing bacteria, underscoring their potential ecological importance in mitigating N2O emissions from urban soils.
Assuntos
Bactérias , Óxido Nitroso , Microbiologia do Solo , Solo , Urbanização , Óxido Nitroso/metabolismo , Solo/química , Bactérias/metabolismo , China , EcossistemaRESUMO
The peptidyl-prolyl cis/trans isomerase NIMA-interaction 1 (Pin1) catalyzes the transition of the proline ring from the cis to trans conformation, resulting in conformational and functional changes in proteins that are regulated by proline-guided serine/threonine phosphorylation. In recent years, Pin1 has emerged as a novel molecular target for the diagnosis and treatment of various malignant tumors. Notably, it has been found that Pin1 is highly expressed in pancreatic cancer. This article focuses on the mechanisms by which Pin1 orchestrates multiple oncogenic functions in the development of pancreatic cancer. By exploring the intricate interactions between Pin1 and the pancreatic tumor microenvironment, we provide an overview of Pin1's role in modifying glycolytic metabolism, redox balance, and the hypoxic microenvironment of pancreatic cancer. Furthermore, we summarize the potential anticancer effects of Pin1 inhibitors, aiming to elucidate Pin1's promise as a potential anticancer agent, particularly in the context of pancreatic cancer.
RESUMO
Although ALK tyrosine kinase inhibitors (ALK-TKIs) have shown remarkable benefits in EML4-ALK positive NSCLC patients compared to conventional chemotherapy, the optimal sequence of ALK-TKIs treatment remains unclear due to the emergence of primary and acquired resistance and the lack of potential prognostic biomarkers. In this study, we systematically explored the validity of sequential ALK inhibitors (alectinib, lorlatinib, crizotinib, ceritinib and brigatinib) for a heavy-treated patient with EML4-ALK fusion via developing an in vitro and in vivo drug testing system based on patient-derived models. Based on the patient-derived models and clinical responses of the patient, we found that crizotinib might inhibit proliferation of EML4-ALK positive tumors resistant to alectinib and lorlatinib. In addition, NSCLC patients harboring the G1269A mutation, which was identified in alectinib, lorlatinib and crizotinib-resistant NSCLC, showed responsiveness to brigatinib and ceritinib. Transcriptomic analysis revealed that brigatinib suppressed the activation of multiple inflammatory signaling pathways, potentially contributing to its anti-tumor activity. Moreover, we constructed a prognostic model based on the expression of IL6, CXCL1, and CXCL5, providing novel perspectives for predicting prognosis in EML4-ALK positive NSCLC patients. In summary, our results delineate clinical responses of sequential ALK-TKIs treatments and provide insights into the mechanisms underlying the superior effects of brigatinib in patients harboring ALKG1269A mutation and resistant towards alectinib, lorlatinib and crizotinib. The molecular signatures model based on the combination of IL6, CXCL1 and CXCL5 has the potential to predict prognosis of EML4-ALK positive NSCLC patients.
Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Proteínas de Fusão Oncogênica , Compostos Organofosforados , Inibidores de Proteínas Quinases , Pirimidinas , Humanos , Compostos Organofosforados/uso terapêutico , Compostos Organofosforados/farmacologia , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Animais , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Prognóstico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Lactamas/uso terapêutico , Carbazóis/uso terapêutico , Carbazóis/farmacologia , Sulfonas/uso terapêutico , Sulfonas/farmacologia , Crizotinibe/uso terapêutico , Crizotinibe/farmacologia , Linhagem Celular Tumoral , Piperidinas/uso terapêutico , Piperidinas/farmacologia , Feminino , Camundongos , Inflamação/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Masculino , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/metabolismo , Proliferação de Células/efeitos dos fármacos , Mutação , Aminopiridinas/uso terapêutico , Aminopiridinas/farmacologiaRESUMO
BACKGROUND: Spinocerebellar ataxia 2 (SCA2) with a low range of CAG repeat expansion of ATXN2 gene can present with predominant or isolated parkinsonism that closely resembles Parkinson's disease (PD). This study is aimed at comparing clinical features, disease progression, and nuclear imaging between ATXN2-related parkinsonism (ATXN2-P) and PD. METHODS: Three hundred and seventy-seven clinically diagnosed PD with family history were screened by multiplex ligation-dependent probe amplification, whole-exome sequencing or target sequencing, and dynamic mutation testing of 10 SCA subtypes. The baseline and longitudinal clinical features as well as the dual-tracer positron emission tomography (PET) imaging were compared between ATXN2-P and genetically undefined familial PD (GU-fPD). RESULTS: Fifteen ATXN2-P patients from 7 families and 50 randomly selected GU-fPD patients were evaluated. Significantly less resting tremor and more symmetric signs were observed in ATXN2-P than GU-fPD. No significant difference was found in motor progression and duration from onset to occurrence of fluctuation, dyskinesia, and recurrent falls between the two groups. Cognitive impairment and rapid-eye-movement sleep behavior disorder were more common in ATXN2-P. During follow-up, olfaction was relatively spared, and no obvious progression of cognition dysfunction evaluated by Mini-Mental State Examination scores was found in ATXN2-P. PET results of ATXN2-P demonstrated a symmetric, diffuse, and homogenous dopamine transporter loss of bilateral striatum and a glucose metabolism pattern inconsistent with that in PD. CONCLUSIONS: Symmetric motor signs and unique nuclear imaging might be the clues to distinguish ATXN2-P from GU-fPD.
Assuntos
Ataxina-2 , Progressão da Doença , Transtornos Parkinsonianos , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Feminino , Ataxina-2/genética , Pessoa de Meia-Idade , Estudos Longitudinais , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/diagnóstico por imagem , Adulto , Idoso , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Estudos de CoortesRESUMO
ARID1A is a core DNA-binding subunit of the BAF chromatin remodeling complex, and is lost in up to 7% of all cancers. The frequency of ARID1A loss increases in certain cancer types, such as clear cell ovarian carcinoma where ARID1A protein is lost in about 50% of cases. While the impact of ARID1A loss on the function of the BAF chromatin remodeling complexes is likely to drive oncogenic gene expression programs in specific contexts, ARID1A also binds genome stability regulators such as ATR and TOP2. Here we show that ARID1A loss leads to DNA replication stress associated with R-loops and transcription-replication conflicts in human cells. These effects correlate with altered transcription and replication dynamics in ARID1A knockout cells and to reduced TOP2A binding at R-loop sites. Together this work extends mechanisms of replication stress in ARID1A deficient cells with implications for targeting ARID1A deficient cancers.
Assuntos
Replicação do DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Fatores de Transcrição/genética , Proteínas Mutadas de Ataxia Telangiectasia , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Humanos , Complexos Multiproteicos/genética , Neoplasias/patologia , Proteínas Nucleares/genéticaRESUMO
Two new C19-diterpenoid alkaloids of the lycoctonine-type (liangshanine A and liangshanine B) and nineteen known compounds (3-21) were isolated from the whole plant of Delphinium liangshanense W. T. Wang, and all the compounds were identified by different spectroscopic analyses, such as IR, HR-ESI-MS and NMR. All the compounds were isolated from this plant for the first time and tested for the anti-proliferation effects on MH7â A and SF9 cells to figure their anti-rheumatoid arthritis and anti-insect activity, but none of them showed remarkable activity.
Assuntos
Alcaloides , Delphinium , Diterpenos , Delphinium/química , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Spodoptera/efeitos dos fármacos , Estrutura Molecular , Humanos , Conformação MolecularRESUMO
BACKGROUND: Autopolyploidy is a valuable model for studying whole-genome duplication (WGD) without hybridization, yet little is known about the genomic structural and functional changes that occur in autopolyploids after WGD. Cyclocarya paliurus (Juglandaceae) is a natural diploid-autotetraploid species. We generated an allele-aware autotetraploid genome, a chimeric chromosome-level diploid genome, and whole-genome resequencing data for 106 autotetraploid individuals at an average depth of 60 × per individual, along with 12 diploid individuals at an average depth of 90 × per individual. RESULTS: Autotetraploid C. paliurus had 64 chromosomes clustered into 16 homologous groups, and the majority of homologous chromosomes demonstrated similar chromosome length, gene numbers, and expression. The regions of synteny, structural variation and nonalignment to the diploid genome accounted for 81.3%, 8.8% and 9.9% of the autotetraploid genome, respectively. Our analyses identified 20,626 genes (69.18%) with four alleles and 9191 genes (30.82%) with one, two, or three alleles, suggesting post-polyploid allelic loss. Genes with allelic loss were found to occur more often in proximity to or within structural variations and exhibited a marked overlap with transposable elements. Additionally, such genes showed a reduced tendency to interact with other genes. We also found 102 genes with more than four copies in the autotetraploid genome, and their expression levels were significantly higher than their diploid counterparts. These genes were enriched in enzymes involved in stress response and plant defense, potentially contributing to the evolutionary success of autotetraploids. Our population genomic analyses suggested a single origin of autotetraploids and recent divergence (~ 0.57 Mya) from diploids, with minimal interploidy admixture. CONCLUSIONS: Our results indicate the potential for genomic and functional reorganization, which may contribute to evolutionary success in autotetraploid C. paliurus.
Assuntos
Duplicação Gênica , Tetraploidia , Humanos , Alelos , Poliploidia , GenômicaRESUMO
BACKGROUND: Correction of the crooked nose, especially the perpendicular plate of the ethmoid bone, has the potential to cause skull base injury. At present, the safe and effective method for perpendicular plate resection has not been clearly defined through biomechanics. METHOD: CT scan data of 48 patients with crooked nose and deviated nasal septum were divided into C-type, angular deformity-type, and S-type based on the morphology of the 3D model. Different types of finite element models of the nasal bony septum and skull base were established. The osteotomy depth, angle, and force mode of the PPE resection were simulated by assembling different working conditions for the models. The von Mises stress of the anterior cranial fossa was observed. RESULTS: When the osteotomy line length was 0.5 cm, the angle was at 30° to the Frankfurt plane, and 50 N·mm torque was applied, the von Mises stress of the skull base was minimal in the four models, showing 0.049 MPa (C-type), 0.082 MPa (S-type), 0.128 MPa (angular deformity-type), and 0.021 MPa (control model). The maximum von Mises stress values were found at the skull base when the osteotomy line was 1.5 cm, the angle was 50°, and the force was 10 N along the X-axis, showing 0.349 MPa (C-type), 0.698 MPa (S-type), 0.451 MPa (angular deformity-type), and 0.149 MPa (control model). CONCLUSION: The use of smaller resection angle with the Frankfurt plane, conservative resection depth, and torsion force can better reduce the stress value at the skull base and reduce the risk of basicranial fracture. It is a safe and effective technique for perpendicular plate resection of the ethmoid bone in the correction of crooked nose. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Assuntos
Nariz , Rinoplastia , Humanos , Nariz/cirurgia , Rinoplastia/métodos , Análise de Elementos Finitos , Osso Etmoide/diagnóstico por imagem , Osso Etmoide/cirurgia , Septo Nasal/diagnóstico por imagem , Septo Nasal/cirurgia , Tomografia Computadorizada por Raios XRESUMO
Urbanization has increased the spread of antibiotic resistance genes (ARGs) impacting urban aquatic ecosystems and threatening human health. However, an overview of the antibiotic resistome in artificial coastal lagoons formed by coastal seawall construction is unclear. This study investigated the resistome of sediment in a coastal lagoon, established for over 60 years and found that the composition of the resistome in the lagoon sediments associated with the seawall significantly differed from that of marine sediment external to the seawall. Moreover, the diversity, number, relative abundance, and absolute abundance of the antibiotic resistome in the lagoon sediments were significantly higher compared to marine sediment. Network analyses revealed that more co-occurrences were found in lagoon sediment between bacterial communities, ARGs and mobile genetic elements (MGEs) than in marine sediments, suggesting that bacteria in lagoon sediments may be associated with multiple antibiotic resistances. Random forest and structural equation models showed that an increase in the absolute abundance of MGEs had a concomitant effect on the absolute abundance and diversity of ARGs, whereas increasing salinity decreased the absolute abundance of ARGs. This study provides a basis to assess the risk of resistome diffusion and persistence in an artificial coastal lagoon.
Assuntos
Antibacterianos , Genes Bacterianos , Humanos , Antibacterianos/farmacologia , Ecossistema , Bactérias/genética , Resistência Microbiana a Medicamentos/genéticaRESUMO
GULP1 is an engulfment adaptor protein containing a phosphotyrosine-binding (PTB) domain, and existing studies have shown that it can promote glucose uptake in 3T3-L1 adipocytes. To further explore key metabolically related differential genes downstream of GULP1, this study conducted transcriptome analysis on adipocytes and skeletal muscle cells overexpressing GULP1. Subsequently, abnormally expressed genes were subjected to bioinformatic analysis, and real-time fluorescent quantitative PCR (qRT-PCR) was used for mutual validation with transcriptome sequencing. The results indicated that, with a threshold of P < 0.05 and |Log2FoldChange| ≥ 1 for screening differentially expressed genes, compared with control cells, there were 278 upregulated and 263 downregulated genes in adipocytes overexpressing GULP1. Metabolism-related GO (Gene Ontology) terms included cholesterol biosynthetic process, cholesterol metabolic process, response to lipopolysaccharide, lipid metabolic process, etc. A total of 52 metabolically related differentially expressed genes were enriched in 10 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, with lipid metabolism being highly enriched. In skeletal muscle cells overexpressing GULP1, there were 280 upregulated and 302 downregulated genes, with metabolism-related GO terms including hormone metabolic process, response to lipopolysaccharide, one-carbon metabolic process, etc. A total of 86 metabolically related differentially expressed genes were enriched in 10 KEGG pathways, with amino acid metabolism, lipid metabolism, and carbohydrate metabolism being highly enriched. GULP1's biological functions are extensive, including lipid metabolism and oncology. This study, through transcriptomics and bioinformatic analysis, identified key metabolically related differential genes downstream of GULP1, obtained metabolically related differential genes and signaling pathways after GULP1 overexpression, providing important theoretical basis for future research on GULP1 downstream target genes.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adipócitos , Animais , Camundongos , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Perfilação da Expressão Gênica/métodos , Metabolismo dos Lipídeos/genética , TranscriptomaRESUMO
DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.