Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(17): 12005-12015, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671429

RESUMO

For photocatalytic applications, the response of a material to the solar spectrum and its redox capabilities are two important factors determined by the band gap and band edge position of the electronic structure of the material. The crystal structure and composition of the photocatalyst are fundamental for determining the above factors. In this article, we examine the functional material Ta-O-N as an example of how to discuss relationships among these factors in detail with the use of theoretical calculations. To explore how the crystal structure and composition influence the photocatalytic performance, two groups of Ta-O-N materials were considered: the first group included ε-Ta2O5, TaON, and Ta3N5; the second group included ß-Ta2O5, δ-Ta2O5, ε-Ta2O5, and amorphous-Ta2O5. Calculation results indicated that the band gap and band edge position are determined by interactions between the atomic core and valence electrons, the overlap of valence electronic states, and the localization of valence states. Ta3N5 and TaON are suitable candidates for efficient photocatalysts owing to their photocatalytic water-splitting ability and good utilization efficiency of solar energy. δ-Ta2O5 has a strong oxidation potential and a band gap suitable for absorbing visible light. Thus, it can be applied to photocatalytic degradation of most pollutants. Although a-Ta2O5, ε-Ta2O5, and ß-Ta2O5 cannot be directly used as photocatalysts, they can still be applied to modify conventional Ta-O-N photocatalysts, owing to their similar composition and structure. These calculation results will be helpful as reference data for analyzing the photocatalytic performance of more complicated Ta-O-N functional materials. On the basis of these findings, one could design novel Ta-O-N functional materials for specific photocatalytic applications by tuning the composition and crystal structure.

2.
ACS Appl Mater Interfaces ; 14(51): 56957-56962, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516318

RESUMO

X-rays play an extremely significant role in medical diagnosis, safety testing, scientific research, and other practical applications. However, as the main sources of radioactive pollution, the hazard of X-rays to human health and the environment has been a major concern. Herein, the explored perovskite scintillator of Cs2Zr1-xPbxCl6 in this work exhibits an ultrahigh radioluminescence intensity owing to the enhanced X-ray absorption for the introduction of Pb2+ ions. The Cs2Zr1-xPbxCl6 crystals are demonstrated as efficient scintillators with a self-trapped exciton emission and extremely high steady-state light yield (∼101,944 photons meV-1). This fascinating scintillator provides a convenient visual tool for X-ray detection even for an indoor lighting environment, reaching a low detection limit of ∼14.2 nGy·s-1, which is about 1/387 of the typical medical imaging dose (5.5 µGy·s-1). Moreover, X-ray imaging with a high resolution of 16.6 lp·mm-1 is achieved with the as-explored Cs2Zr1-xPbxCl6 scintillator film. Herein, the Cs2Zr1-xPbxCl6 scintillator provides a feasible strategy for X-ray monitoring in the field of biomedicine, high-energy physics, national security, and other applications.

3.
Nanomaterials (Basel) ; 8(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201917

RESUMO

As important functional materials, the electronic structure and physical properties of (GaAs)m(AlAs)n superlattices (SLs) have been extensively studied. However, due to limitations of computational methods and computational resources, it is sometimes difficult to thoroughly understand how and why the modification of their structural parameters affects their electronic structure and physical properties. In this article, a high-throughput study based on density functional theory calculations has been carried out to obtain detailed information and to further provide the underlying intrinsic mechanisms. The band gap variations of (GaAs)m(AlAs)n superlattices have been systematically investigated and summarized. They are very consistent with the available reported experimental measurements. Furthermore, the direct-to-indirect-gap transition of (GaAs)m(AlAs)n superlattices has been predicted and explained. For certain thicknesses of the GaAs well (m), the band gap value of (GaAs)m(AlAs)n SLs exponentially increases (increasing n), while for certain thicknesses of the AlAs barrier (n), the band gap value of (GaAs)m(AlAs)n SLs exponentially decreases (increasing m). In both cases, the band gap values converge to certain values. Furthermore, owing to the energy eigenvalues at different k-points showing different variation trends, (GaAs)m(AlAs)n SLs transform from a Γ-Γ direct band gap to Γ-M indirect band gap when the AlAs barrier is thick enough. The intrinsic reason for these variations is that the contributions and positions of the electronic states of the GaAs well and the AlAs barrier change under altered thickness conditions. Moreover, we have found that the binding energy can be used as a detector to estimate the band gap value in the design of (GaAs)m(AlAs)n devices. Our findings are useful for the design of novel (GaAs)m(AlAs)n superlattices-based optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA