Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091036

RESUMO

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Assuntos
Ebolavirus/genética , Ebolavirus/isolamento & purificação , Genoma Viral , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Mutação , Evolução Biológica , Surtos de Doenças , Ebolavirus/classificação , Doença pelo Vírus Ebola/transmissão , Humanos , Serra Leoa/epidemiologia , Manejo de Espécimes
2.
BMC Infect Dis ; 22(1): 624, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850699

RESUMO

BACKGROUND: Globally, hearing loss is the second leading cause of disability, affecting approximately 18.7% of the world's population. However, the burden of hearing loss is unequally distributed, with the majority of affected individuals located in Asia or Sub-Saharan Africa. Following the 2014 West African Ebola Outbreak, disease survivors began to describe hearing loss as part of the constellation of symptoms known as Post-Ebola Syndrome. The goal of this study was to more fully characterize hearing loss among Ebola Virus Disease (EVD) survivors. METHODOLOGY AND PRINCIPAL FINDINGS: EVD survivors and their household contacts were recruited (n = 1,12) from Eastern Sierra Leone. Each individual completed a symptom questionnaire, physical exam, and a two-step audiometry process measuring both air and bone conduction thresholds. In comparison to contacts, EVD survivors were more likely to have complaints or abnormal findings affecting every organ system. A significantly greater percentage of EVD survivors were found to have hearing loss in comparison to contacts (23% vs. 9%, p < 0.001). Additionally, survivors were more likely to have bilateral hearing loss of a mixed etiology. Logistic regression revealed that the presence of any symptoms of middle or inner ear (p < 0.001), eye (p = 0.005), psychiatric (p = 0.019), and nervous system (p = 0.037) increased the odds of developing hearing loss. CONCLUSIONS AND SIGNIFICANCE: This study is the first to use an objective and standardized measurement to report hearing loss among EVD survivors in a clinically meaningful manner. In this study it was found that greater than 1/5th of EVD survivors develop hearing loss. The association between hearing impairment and symptoms affecting the eye and nervous system may indicate a similar mechanism of pathogenesis, which should be investigated further. Due to the quality of life and socioeconomic detriments associated with untreated hearing loss, a greater emphasis must be placed on understanding and mitigating hearing loss following survival to aid in economic recovery following infectious disease epidemics.


Assuntos
Perda Auditiva , Doença pelo Vírus Ebola , Sobreviventes , Surtos de Doenças , Perda Auditiva/epidemiologia , Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/epidemiologia , Humanos , Prevalência , Serra Leoa/epidemiologia , Sobreviventes/estatística & dados numéricos
3.
N Engl J Med ; 371(22): 2092-100, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25353969

RESUMO

BACKGROUND: Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014. METHODS: We reviewed available epidemiologic, clinical, and laboratory records of patients in whom EVD was diagnosed between May 25 and June 18, 2014. We used quantitative reverse-transcriptase-polymerase-chain-reaction assays to assess the load of Ebola virus (EBOV, Zaire species) in a subgroup of patients. RESULTS: Of 106 patients in whom EVD was diagnosed, 87 had a known outcome, and 44 had detailed clinical information available. The incubation period was estimated to be 6 to 12 days, and the case fatality rate was 74%. Common findings at presentation included fever (in 89% of the patients), headache (in 80%), weakness (in 66%), dizziness (in 60%), diarrhea (in 51%), abdominal pain (in 40%), and vomiting (in 34%). Clinical and laboratory factors at presentation that were associated with a fatal outcome included fever, weakness, dizziness, diarrhea, and elevated levels of blood urea nitrogen, aspartate aminotransferase, and creatinine. Exploratory analyses indicated that patients under the age of 21 years had a lower case fatality rate than those over the age of 45 years (57% vs. 94%, P=0.03), and patients presenting with fewer than 100,000 EBOV copies per milliliter had a lower case fatality rate than those with 10 million EBOV copies per milliliter or more (33% vs. 94%, P=0.003). Bleeding occurred in only 1 patient. CONCLUSIONS: The incubation period and case fatality rate among patients with EVD in Sierra Leone are similar to those observed elsewhere in the 2014 outbreak and in previous outbreaks. Although bleeding was an infrequent finding, diarrhea and other gastrointestinal manifestations were common. (Funded by the National Institutes of Health and others.).


Assuntos
Ebolavirus/genética , Epidemias , Doença pelo Vírus Ebola/epidemiologia , Dor Abdominal , Adulto , Animais , Diarreia , Ebolavirus/isolamento & purificação , Feminino , Febre , Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/terapia , Doença pelo Vírus Ebola/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serra Leoa/epidemiologia , Carga Viral , Vômito
4.
J Infect Dis ; 214(suppl 3): S110-S121, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402779

RESUMO

BACKGROUND: Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013-2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs. METHODS: Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities. RESULTS: Augustine Goba, director of the KGH Lassa laboratory, diagnosed the first documented case of EVD in Sierra Leone, on 25 May 2014. Thereafter, KGH received and cared for numbers of patients with EVD that quickly overwhelmed the capacity for safe management. Numerous healthcare workers contracted and lost their lives to EVD. The vast majority of subsequent EVD cases in West Africa can be traced back to a single transmission chain that includes this first diagnosed case. CONCLUSIONS: Responding to the challenges of confronting 2 hemorrhagic fever viruses will require continued investments in the development of countermeasures (vaccines, therapeutic agents, and diagnostic assays), infrastructure, and human resources.


Assuntos
Surtos de Doenças , Ebolavirus/isolamento & purificação , Genoma Viral/genética , Doença pelo Vírus Ebola/epidemiologia , Febre Lassa/epidemiologia , Vírus Lassa/isolamento & purificação , Adolescente , Adulto , África Ocidental/epidemiologia , Criança , Pré-Escolar , Ebolavirus/genética , Monitoramento Epidemiológico , Feminino , Genômica , Guiné/epidemiologia , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Febre Lassa/diagnóstico , Febre Lassa/transmissão , Febre Lassa/virologia , Vírus Lassa/genética , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Serra Leoa/epidemiologia , Adulto Jovem
5.
medRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993465

RESUMO

Background: Lassa fever (LF) is a rodent-borne disease endemic to West Africa. In the absence of licensed therapeutics or vaccines, rodent exclusion from living spaces remains the primary method of preventing LF. Zoonotic surveillance of Lassa virus (LASV), the etiologic agent of LF, can assess the burden of LASV in a region and guide public health measures against LF. Methods: In this study, we adapted commercially available LASV human diagnostics to assess the prevalence of LASV in peri-domestic rodents in Eastern Sierra Leone. Small mammal trapping was conducted in Kenema district, Sierra Leone between November 2018-July 2019. LASV antigen was detected using a commercially available LASV NP antigen rapid diagnostic test. LASV IgG antibodies against LASV nucleoprotein (NP) and glycoprotein (GP) were tested by adapting a commercially available semi-quantitative enzyme linked immunosorbent assay (ELISA) for detection of mouse-related and rat-related species IgG. Findings: Of the 373 tested specimens, 74 (20%) tested positive for LASV antigen. 40 (11%) specimens tested positive for LASV NP IgG, while an additional 12 (3%) specimens only tested positive for LASV GP IgG. Simultaneous antigen presence and IgG antibody presence was linked in Mastomys sp. specimens (p < 0.01), but not Rattus sp. specimens (p = 1). Despite the link between antigen presence and IgG antibody presence in Mastomys sp., the strength of antigen response did not correlate with the strength of IgG response to either GP IgG or NP IgG. Interpretation: The tools developed in this study can aid in the generation of valuable public health data for rapid field assessment of LASV burden during outbreak investigations and general LASV surveillance. Funding: Funding for this work was supported by the National Institute of Allergy and Infectious Diseases National Institute of Health, Department of Health and Human Services under the following grants: International Collaboration in Infectious Disease Research on Lassa fever and Ebola - ICIDR - U19 AI115589, Consortium for Viral Systems Biology - CViSB - 5U19AI135995, West African Emerging Infectious Disease Research Center - WARN-ID - U01AI151812, West African Center for Emerging Infectious Diseases: U01AI151801.

6.
PLoS Negl Trop Dis ; 17(2): e0010938, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36758101

RESUMO

BACKGROUND: Lassa virus (LASV), the cause of the acute viral hemorrhagic illness Lassa fever (LF), is endemic in West Africa. Infections in humans occur mainly after exposure to infected excrement or urine of the rodent-host, Mastomys natalensis. The prevalence of exposure to LASV in Sierra Leone is crudely estimated and largely unknown. This cross-sectional study aimed to establish a baseline point seroprevalence of IgG antibodies to LASV in three administrative districts of Sierra Leone and identify potential risk factors for seropositivity and LASV exposure. METHODOLOGY AND PRINCIPAL FINDINGS: Between 2015 and 2018, over 10,642 participants from Kenema, Tonkolili, and Port Loko Districts were enrolled in this cross-sectional study. Previous LASV and LF epidemiological studies support classification of these districts as "endemic," "emerging," and "non-endemic", respectively. Dried blood spot samples were tested for LASV antibodies by ELISA to determine the seropositivity of participants, indicating previous exposure to LASV. Surveys were administered to each participant to assess demographic and environmental factors associated with a higher risk of exposure to LASV. Overall seroprevalence for antibodies to LASV was 16.0%. In Kenema, Port Loko, and Tonkolili Districts, seroprevalences were 20.1%, 14.1%, and 10.6%, respectively. In a multivariate analysis, individuals were more likely to be LASV seropositive if they were living in Kenema District, regardless of sex, age, or occupation. Environmental factors contributed to an increased risk of LASV exposure, including poor housing construction and proximity to bushland, forested areas, and refuse. CONCLUSIONS AND SIGNIFICANCE: In this study we determine a baseline LASV seroprevalence in three districts which will inform future epidemiological, ecological, and clinical studies on LF and the LASV in Sierra Leone. The heterogeneity of the distribution of LASV and LF over both space, and time, can make the design of efficacy trials and intervention programs difficult. Having more studies on the prevalence of LASV and identifying potential hyper-endemic areas will greatly increase the awareness of LF and improve targeted control programs related to LASV.


Assuntos
Febre Lassa , Viroses , Animais , Humanos , Serra Leoa/epidemiologia , Estudos Transversais , Estudos Soroepidemiológicos , Febre Lassa/epidemiologia , Vírus Lassa , Murinae , Anticorpos Antivirais , Imunoglobulina G
7.
Science ; 345(6202): 1369-72, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25214632

RESUMO

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.


Assuntos
Surtos de Doenças , Ebolavirus/genética , Monitoramento Epidemiológico , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Sequência de Bases , Ebolavirus/isolamento & purificação , Variação Genética , Genoma Viral/genética , Genômica/métodos , Doença pelo Vírus Ebola/epidemiologia , Humanos , Mutação , Análise de Sequência de DNA , Serra Leoa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA