Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062593

RESUMO

Research on stretchable strain sensors is actively conducted due to increasing interest in wearable devices. However, typical studies have focused on improving the elasticity of the electrode. Therefore, methods of directly connecting wire or attaching conductive tape to materials to detect deformation have been used to evaluate the performance of strain sensors. Polyaniline (PANI), a p-type semiconductive polymer, has been widely used for stretchable electrodes. However, conventional procedures have limitations in determining an appropriate metal for ohmic contact with PANI. Materials that are generally used for connection with PANI form an undesirable metal-semiconductor junction and have significant contact resistance. Hence, they degrade sensor performance. This study secured ohmic contact by adapting Au thin film as the metal contact layer (the MCL), with lower contact resistance and a larger work function than PANI. Additionally, we presented a buffer layer using hard polydimethylsiloxane (PDMS) and structured it into a dumbbell shape to protect the metal from deformation. As a result, we enhanced steadiness and repeatability up to 50% strain by comparing the gauge factors and the relative resistance changes. Consequently, adapting structural methods (the MCL and the dumbbell shape) to a device can result in strain sensors with promising stability, as well as high stretchability.

2.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408355

RESUMO

Stretchable strain sensors are capable of acquiring data when in contact with human skin or equipment and are widely used in wearable applications. Most strain sensors have tensile properties of less than 20% and have limitations regarding body motion linkage, complex sensor structure, and motion nonreliability. To address these problems, we developed a high tension and high sensitivity sensor with a gauge factor over 40 and tensile stress about 50%. Polydimethylsiloxane (PDMS) was selected as the flexible substrate to ensure tensile strength, and polyaniline (PANI) was used to measure the resistance changes in the sensor. In particular, problems regarding poor uniformity of PANI on PDMS were resolved by surface treatment of the PDMS, wherein PANI polymerization was performed sequentially after forming a self-assembled monolayer (SAM) on the PDMS substrate. O2 plasma and (3-aminopropyl)triethoxysilane were used to form the SAM. It is expected that this sensor can obtain stable characteristics even under high tensile stress through the evenly formed PANI films on the surface-treated PDMS substrate and may be used in various flexible sensor applications.


Assuntos
Dimetilpolisiloxanos , Compostos de Anilina , Dimetilpolisiloxanos/química , Humanos , Polimerização , Propilaminas , Silanos
3.
Chemosphere ; 272: 129639, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33482511

RESUMO

In this investigation, a sequences of iron diselenide (FeSe2) nanomaterials as the competent and highly stable catalysts for the detoxification of aqueous organic dye pollutants such as Congo red (CR) and methylene blue (MB) through Electro-Fenton (EF) process using hydrogen peroxide as an initiator have been studied. The utilized selenium precursors include selenium metal, selenious acid (H2SeO3) and selenium dioxide (SeO2) which were employed for the synthesis of FeSe2 catalysts through a wet chemical strategy. It has been observed that based on the employed precursors, different morphologies ranges of the FeSe2 catalysts were obtained: microgranualr particles to nano-stick to nanoflakes. The crystalline nature and phase purity of the obtained FeSe2 catalysts were determined through XRD, Raman and HR-TEM analyses which confirmed their orthorhombic ferroselite structure. Among the prepared FeSe2 catalysts, FS-2 (using H2SeO3) displayed better porous properties as compared to other catalysts and achieved the highest surface area of 74.68 m2g-1. The narrow bandgap (0.88 eV) and fast conversion of Fe2+/Fe3+ cycle of FeSe2 led CR and MB degradation of 93.3% and 90.4%, respectively. The outcome of this study demonstrates improved catalytic properties of FeSe2 nanostructures for the efficient detoxification of hazardous and toxic effluents.


Assuntos
Nanoestruturas , Selênio , Catálise , Peróxido de Hidrogênio , Ferro
4.
Environ Pollut ; 272: 116018, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257147

RESUMO

The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh-B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh-B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh-B.


Assuntos
Zeolitas , Óxido de Zinco , Imidazóis , Lantânio , Rodaminas , Água
5.
Polymers (Basel) ; 12(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326662

RESUMO

Since the ability of ionic liquid (IL) was demonstrated to act as a solvent or an electrolyte, IL-based electrolytes have been widely used as a potential candidate for renewable energy storage devices, like lithium ion batteries (LIBs) and supercapacitors (SCs). In this review, we aimed to present the state-of-the-art of IL-based electrolytes electrochemical, cycling, and physicochemical properties, which are crucial for LIBs and SCs. ILs can also be regarded as designer solvents to replace the more flammable organic carbonates and improve the green credentials and performance of energy storage devices, especially LIBs and SCs. This review affords an outline of the progress of ILs in energy-related applications and provides essential ideas on the emerging challenges and openings that may motivate the scientific communities to move towards IL-based energy devices. Finally, the challenges in design of the new type of ILs structures for energy and environmental applications are also highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA