RESUMO
Notch signaling pathway activity, particularly fluctuations in the biologically active effector fragment NICD, is required for rapid and efficient dynamic regulation of proper fate decisions in stem cells. In this study, we identified NEDD4-binding protein 1 (N4BP1), which is highly expressed in the developing mouse cerebral cortex, as a negative modulator of Notch signaling dynamics in neural progenitor cells. Intriguingly, N4BP1 regulated NICD stability specifically after Notch1 S3 cleavage through ubiquitin-mediated degradation that depended on its RAM domain, not its PEST domain, as had been extensively and previously described. The CoCUN domain in N4BP1, particularly the "Phe-Pro" motif (862/863 amino acid), was indispensable for mediating NICD degradation. The Ring family E3 ligase Trim21 was, in contrast to other NEDD4 family members, required for N4BP1-regulated NICD degradation. Overexpression of N4BP1 in cortical neural progenitors promoted neural stem cell differentiation, whereas neural progenitor cells lacking N4BP1 were sensitized to Notch signaling, resulting in the maintenance of stem-like properties in neural progenitor cells and lower production of cortical neurons.
Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Camundongos , Diferenciação Celular/fisiologia , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Type 2 diabetes (T2D) is potentially linked to disordered tryptophan metabolism that attributes to the intricate interplay among diet, gut microbiota, and host physiology. However, underlying mechanisms are substantially unknown. Comparing the gut microbiome and metabolome differences in mice fed a normal diet (ND) and high-fat diet (HFD), we uncover that the gut microbiota-dependent tryptophan metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) is present at lower concentrations in mice with versus without insulin resistance. We further demonstrate that the microbial transformation of tryptophan into 5-HIAA is mediated by Burkholderia spp. Additionally, we show that the administration of 5-HIAA improves glucose intolerance and obesity in HFD-fed mice, while preserving hepatic insulin sensitivity. Mechanistically, 5-HIAA promotes hepatic insulin signaling by directly activating AhR, which stimulates TSC2 transcription and thus inhibits mTORC1 signaling. Moreover, T2D patients exhibit decreased fecal levels of 5-HIAA. Our findings identify a noncanonical pathway of microbially producing 5-HIAA from tryptophan and indicate that 5-HIAA might alleviate the pathogenesis of T2D.
Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Resistência à Insulina , Fígado , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Proteína 2 do Complexo Esclerose Tuberosa , Animais , Dieta Hiperlipídica/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Triptofano/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Fígado/metabolismo , Humanos , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Fatores de Transcrição Hélice-Alça-Hélice BásicosRESUMO
Actinobacteria are ubiquitous bacteria undergoing complex developmental transitions coinciding with antibiotic production in response to stress or nutrient starvation. This transition is mainly controlled by the interaction between the second messenger c-di-GMP and the master repressor BldD. To date, the upstream factors and the global signal networks that regulate these intriguing cell biological processes remain unknown. In Saccharopolyspora erythraea, we found that acetyl phosphate (AcP) accumulation resulting from environmental nitrogen stress participated in the regulation of BldD activity through cooperation with c-di-GMP. AcP-induced acetylation of BldD at K11 caused the BldD dimer to fall apart and dissociate from the target DNA and disrupted the signal transduction of c-di-GMP, thus governing both developmental transition and antibiotic production. Additionally, practical mutation of BldDK11R bypassing acetylation regulation could enhance the positive effect of BldD on antibiotic production. The study of AcP-dependent acetylation is usually confined to the control of enzyme activity. Our finding represents an entirely different role of the covalent modification caused by AcP, which integrated with c-di-GMP signal in modulating the activity of BldD for development and antibiotic production, coping with environmental stress. This coherent regulatory network might be widespread across actinobacteria, thus has broad implications.
Assuntos
Antibacterianos , Saccharopolyspora , Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Saccharopolyspora/metabolismoRESUMO
CRISPR/Cas technology has made great progress in the field of live-cell imaging beyond genome editing. However, effective and easy-to-use CRISPR systems for labeling multiple RNAs of interest are still needed. Here, we engineered a CRISPR/dCas12a system that enables the specific recognition of the target RNA under the guidance of a PAM-presenting oligonucleotide (PAMmer) to mimic the PAM recognition mechanism for DNA substrates. We demonstrated the feasibility and specificity of this system for specifically visualizing endogenous mRNA. By leveraging dCas12a-mediated precursor CRISPR RNA (pre-crRNA) processing and the orthogonality of dCas12a from different bacteria, we further demonstrated the proposed system as a simple and versatile molecular toolkit for multiplexed imaging of different types of RNA transcripts in live cells with high specificity. This programmable dCas12a system not only broadens the RNA imaging toolbox but also facilitates diverse applications for RNA manipulation.
Assuntos
Sistemas CRISPR-Cas , RNA , RNA/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/métodos , Bactérias/genética , Precursores de RNARESUMO
Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.
Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Via de Sinalização Wnt , Prognóstico , Carcinogênese/genéticaRESUMO
An Hz-magnitude ultra-narrow linewidth single-frequency Brillouin fiber laser (BFL) is proposed and experimentally demonstrated. The single frequency of the laser is selected by parity-time (PT) symmetry, which consists of a stimulated Brillouin scatter (SBS) gain path excited by a 24â km single-mode fiber (SMF) and an approximately equal length loss path tuned with a variable optical attenuator (VOA). These paths are coupled through a fiber Bragg grating (FBG) into a wavelength space. Accomplishing single-frequency oscillation involves the precise adjustment of polarization control (PC) and VOA to attain the PT broken phase. In the experiment, the linewidth of the proposed BFL is 9.58â Hz. The optical signal-to-noise ratio (OSNR) reached 78.89â dB, with wavelength and power fluctuations of less than 1pm and 0.02â dB within one hour. Furthermore, the wavelength can be tuned from 1549.9321â nm to 1550.2575â nm, with a linewidth fluctuation of 1.81â Hz. The relative intensity noise (RIN) is below -74â dB/Hz. The proposed ultra-narrow single-frequency BFL offers advantages such as cost-effectiveness, ease of control, high stability and excellent output characteristics, making it highly promising for the applications in the coherent detection.
RESUMO
A voltage sensor with high resolution and large measurement range based on an optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. The key component in the cavity to select the oscillating signal is a finite impulse response (FIR)-microwave photonic filter (MPF) which consists of a sinusoidal broadband optical signal, an unbalanced Mach-Zehnder interferometer (MZI), a section of dispersion compensating fiber, and a photodetector. The center frequency of the FIR-MPF is mainly determined by the free spectral range (FSR) of the FIR-MPF. In the lower arm of the MZI, a cylindrical piezoelectric ceramic (PZT) wrapped with a section of optical fiber acts as voltage sensing head. Due to the inverse piezoelectric effect of PZT, the variation of the voltage will cause radial deformation of the cylindrical PZT and then lead to the change of the FSR of the MZI, determining the shift of center frequency of FIR-MPF as well as the frequency of the oscillating signal of the OEO. Thus, by monitoring the shift of the oscillation frequency of the OEO using an electric spectrum analyzer or a digital signal processor, a high-speed interrogation and high-resolution voltage measurement can be realized. Additionally, in the proposed scheme, an infinite impulse response (IIR)-MPF consisting of a fiber ring resonator is cascaded with the FIR-MPF to ensure the single-mode oscillation of the OEO. The experimental results show that a total range of 1700 V voltage sensing from - 200â V to 1500â V is accomplished with the voltage sensitivity of 0.25â GHz/100â V and the resolution of 0.3â V. By adjusting the proportion of the length of single mode fiber between two branches of MZI, the impact of temperature can be greatly reduced. The proposed sensor offers advantages such as a large measurement range, high resolution, high-speed interrogation, and stability to temperature disturbances, making it highly suitable for sensing applications in smart grids.
RESUMO
Nectin-like family members (Necls) are involved in synaptic organization. In contrast to that of Necl-2/CADM1/SynCAM1, which is critical in synaptic events, investigation of Necl-4/CADM4/SynCAM4 in synapses has largely lagged behind given the particularity of homophilic self-interactions compared to interactions with other Necls. We sought to further understand the role of Necl-4 in synapses and found that knockout of Necl-4 led to aberrant expression levels of proteins mediating synaptic function in cortex homogenates and augmented accumulation of ionotropic glutamate receptor in postsynaptic density fractions, although a compensatory effect of Necl-1 on the expression levels existed. Concurrently, we also found increased synaptic clefts in the cortex and simplified dendritic morphology of primary cultured cortical neurons. Experiments on individual behaviors suggested that compared to their wild-type littermates, Necl-4-KO mice exhibited impaired acquisition of spatial memory and working memory and enhanced behavioral despair and anxiety-like behavior. These findings suggest that Necl-4 mediates synaptic function and related behaviors through an indispensable role and offer a new perspective about collaboration and specialization among Necls.
Assuntos
Moléculas de Adesão Celular , Neurônios , Camundongos , Animais , Nectinas/genética , Moléculas de Adesão Celular/metabolismo , Neurônios/metabolismo , Sinapses/metabolismoRESUMO
Increasing evidence suggests that intestine microorganisms are closely related to shrimp growth, but there is no existing experiment to prove this hypothesis. Here, we compared the intestine bacterial community of fast- and slow-growing shrimp at the same developmental stage with a marked difference in body size. Our results showed that the intestine bacterial communities of slow-growing shrimp exhibited less diversity but were more heterogeneous than those of fast-growing shrimp. Uncultured_bacterium_g_Candidatus Bacilloplasma, Tamlana agarivorans, Donghicola tyrosinivorans, and uncultured_bacterium_f_Flavobacteriaceae were overrepresented in the intestines of fast-growing shrimp, while Shimia marina, Vibrio sp., and Vibrio campbellii showed the opposite trends. We further found that the bacterial community composition was significantly correlated with shrimp length, and some bacterial species abundances were found to be significantly correlated with shrimp weight and length, including T. agarivorans and V. campbellii, which were chosen as indicators for a reverse gavage experiment. Finally, T. agarivorans was found to significantly promote shrimp growth after the experiment. Collectively, these results suggest that intestine bacterial community could be important factors in determining the growth of shrimp, indicating that specific bacteria could be tested in further studies against shrimp growth retardation. KEY POINTS: ⢠A close relationship between intestine bacterial community and shrimp growth was proven by controllable experiments. ⢠The bacterial signatures of the intestine were markedly different between slow- and fast-growing shrimp, and the relative abundances of some intestine bacterial species were correlated significantly with shrimp body size. ⢠Reverse gavage by Tamlana agarivorans significantly promoted shrimp growth.
Assuntos
Alteromonadaceae , Penaeidae , Animais , Alimentos MarinhosRESUMO
BACKGROUND: Kerion is a severe type of tinea capitis that is difficult to treat and remains a public health problem. OBJECTIVES: To evaluate the epidemiologic features and efficacy of different treatment schemes from real-world experience. METHODS: From 2019 to 2021, 316 patients diagnosed with kerion at 32 tertiary Chinese hospitals were enrolled. We analysed the data of each patient, including clinical characteristics, causative pathogens, treatments and outcomes. RESULTS: Preschool children were predominantly affected and were more likely to have zoophilic infection. The most common pathogen in China was Microsporum canis. Atopic dermatitis (AD), animal contact, endothrix infection and geophilic pathogens were linked with kerion occurrence. In terms of treatment, itraconazole was the most applied antifungal agent and reduced the time to mycological cure. A total of 22.5% of patients received systemic glucocorticoids simultaneously, which reduced the time to complete symptom relief. Furthermore, glucocorticoids combined with itraconazole had better treatment efficacy, with a higher rate and shorter time to achieving mycological cure. CONCLUSIONS: Kerion often affects preschoolers and leads to serious sequelae, with AD, animal contact, and endothrix infection as potential risk factors. Glucocorticoids, especially those combined with itraconazole, had better treatment efficacy.
Assuntos
Antifúngicos , Itraconazol , Microsporum , Tinha do Couro Cabeludo , Humanos , Pré-Escolar , Antifúngicos/uso terapêutico , Masculino , Feminino , Tinha do Couro Cabeludo/tratamento farmacológico , Tinha do Couro Cabeludo/epidemiologia , Tinha do Couro Cabeludo/microbiologia , Itraconazol/uso terapêutico , China/epidemiologia , Microsporum/isolamento & purificação , Criança , Lactente , Glucocorticoides/uso terapêutico , Resultado do Tratamento , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/epidemiologia , Dermatite Atópica/microbiologia , Fatores de Risco , Adolescente , Adulto , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
Past studies in animal models have extensively investigated the impact of early life experiences on behavioral development, yet relatively few have specifically examined the implications of peripubertal experiences on the evolution of competitive behavior across distinct stages of adulthood. In the current research, we probed potential differences in competitive behavior during emerging adulthood (3 months old) and middle adulthood (12 months old) in 81 Sprague-Dawley male rats exposed to three different peripubertal (postnatal Days 37-60) environments: an enriched environment (EE), a chronic unpredictable mild stress (CUMS) condition, and a control condition. Anxiety-like behavior served as a positive control in our study. Results revealed significant variations in competitive behavior among the groups during emerging adulthood. The EE group displayed the least anxiety and outperformed their peers in food-reward-oriented competition, whereas the CUMS group excelled in status-driven, agonistic competition. However, these behavioral differentiations gradually attenuated by middle adulthood, at which point the control group began to show an advantage. Our findings suggest that although peripubertal experiences significantly shape competitive behavior in the emerging adulthood stage, this effect diminishes over time and is nearly non-detectable during mid-adulthood, underscoring the fluidity of behavioral development and demonstrating that the effects of peripubertal experiences can be modulated by subsequent life experiences.
Assuntos
Comportamento Animal , Comportamento Competitivo , Ratos Sprague-Dawley , Estresse Psicológico , Animais , Masculino , Ratos , Comportamento Competitivo/fisiologia , Comportamento Animal/fisiologia , Estresse Psicológico/fisiopatologia , Ansiedade/fisiopatologia , Meio Ambiente , Fatores EtáriosRESUMO
This commentary examines the synergy between meta-learned models of cognition and integrative learning in enhancing animal and human learning outcomes. It highlights three integrative learning modes - holistic integration of parts, top-down reasoning, and generalization with in-depth analysis - and their alignment with meta-learned models of cognition. This convergence promises significant advances in educational practices, artificial intelligence, and cognitive neuroscience, offering a novel perspective on learning and cognition.
Assuntos
Cognição , Aprendizagem , Humanos , Animais , Cognição/fisiologia , Aprendizagem/fisiologia , Inteligência Artificial , Modelos Psicológicos , Generalização Psicológica/fisiologiaRESUMO
OBJECTIVES: To identify the 5' untranslated region of Zika virus (ZIKV 5'UTR) RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site (IRES) located in ZIKV 5'UTR and virus production. METHODS: Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining. Subsequently, liquid chromatography-tandem mass spectrometry (LC-MS/MS), bioinformatics analysis, and Western blot were used to identify the candidate proteins binding to ZIKV 5'UTR. Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production, respecitvely. RESULTS: tRSA RNA pull-down assay, LC-MS/MS, and Western blot analysis showed that polypyrimidine tract-binding protein (PTB) bound to the ZIKV 5'UTR. Furthermore, dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV (t = 10.220, P < 0.001), while PTB knockdown had the opposite effect (t = 4.897, P < 0.01). Additionally, virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer (t = 6.400, P < 0.01), whereas reducing PTB expression level weakened virus infectivity (t = 5.055, P < 0.01). CONCLUSIONS: PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.
Assuntos
Regiões 5' não Traduzidas , Sítios Internos de Entrada Ribossomal , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Zika virus , Zika virus/genética , Zika virus/metabolismo , Zika virus/fisiologia , Regiões 5' não Traduzidas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Sítios Internos de Entrada Ribossomal/genética , Humanos , Biossíntese de Proteínas , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Infecção por Zika virus/genética , Ligação ProteicaRESUMO
By recombining natural cell signaling systems and further reprogramming cell functions, use of genetically engineered cells and bacteria as therapies is an innovative emerging concept. However, the inherent properties and structures of the natural signal sensing and response pathways constrain further development. We present a universal DNA-based sensing toolbox on the cell surface to endow new signal sensing abilities for cells, control cell states, and reprogram multiple cell functions. The sensing toolbox contains a triangular-prismatic-shaped DNA origami framework and a sensing core anchored inside the internal confined space to enhance the specificity and efficacy of the toolbox. As a proof of principle, the sensing toolbox uses the customizable sensing core with signal sensing switches and converters to recognize unconventional signal inputs, deliver functional components to cells, and then control cell responses, including specific tumor cell death, immune cell disinhibition and adhesion, and bacterial expression. This work expands the diversity of cell sensing signals and reprograms biological functions by constructing nanomechanical-natural hybrid cells, providing new strategies for engineering cells and bacteria in diagnosis and treatment applications.
Assuntos
DNA , Transdução de Sinais , Engenharia Genética , Bactérias/genética , Percepção de QuorumRESUMO
Porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family and the coronavirus genus, causing contact enteric infection in pigs. It is one of the most serious diseases that threatens the pig industry. However, there is currently no specific drug to prevent and treat the disease, indicating that we need to be vigilant about the spread of the disease and the development of anti-PEDV drugs. The dried aerial parts of the plant Portulaca oleracea in the family Portulacaceous, whose decoction can be used to treat acute enteritis, dysentery, diarrhea, and other diseases. This study explored the potential mechanism of water extract of Portulaca oleracea (WEPO) in PEDV-induced pyroptosis in Vero cells. PEDV decreased the viability of Vero cells in a dose- and time-dependent manner, causing cell damage, upregulating the level of intracellular Nlrp3, and inhibiting the level of Gasdermin D (GSDMD) and the activation of Caspase-1. WEPO can inhibit PEDV-induced pyroptosis, reduce the elevation of inflammatory factors caused by infection, and exhibit a dose-dependent effect. Knockdown of Caspase-1 and GSDMD separately can induce the production of the inflammatory factor IL-1ß to significantly decrease and increase, respectively. These results suggest that WEPO can inhibit cell pyroptosis caused by PEDV and that the Caspase-1 and GSDMD pathways play an important role in this process.
RESUMO
The clustered regularly interspaced short palindromic repeats (CRISPR/Cas12a) system has exhibited great promise in the rapid and sensitive molecular diagnostics for its trans-cleavage property. However, most CRISPR/Cas system-based detection methods are designed for nucleic acids and require target preamplification to improve sensitivity and detection limits. Here, we propose a generic crRNA switch circuit-regulated CRISPR/Cas sensor for the sensitive detection of various targets. The crRNA switch is engineered and designed in a blocked state but can be activated in the presence of triggers, which are target-induced association DNA to initiate the trans-cleavage activity of Cas12a for signal reporting. Additionally, RNase H is introduced to specifically hydrolyze RNA duplexed with the DNA trigger, resulting in the regeneration of the trigger to activate more crRNA switches. Such a combination provides a generic and sensitive strategy for the effective sensing of the p53 sequence, thrombin, and adenosine triphosphate. The design is incorporated with nucleic acid nanotechnology and extensively broadens the application scope of the CRISPR technology in biosensing.
Assuntos
Técnicas Biossensoriais , RNA Guia de Sistemas CRISPR-Cas , Ribonuclease H , RNA , Sistemas CRISPR-Cas/genética , DNARESUMO
Social biotic colonies often perform intricate tasks by interindividual communication and cooperation. Inspired by these biotic behaviors, a DNA nanodevice community is proposed as a universal and scalable platform. The modular nanodevice as the infrastructure of platform contains a DNA origami triangular prism framework and a hairpin-swing arm machinery core. By coding and decoding a signal domain on the shuttled output strand in different nanodevices, an orthogonal inter-nanodevice communication network is established to connect multi-nanodevices into a functional platform. The nanodevice platform enables implementation of diverse tasks, including signal cascading and feedback, molecular input recording, distributed logic computing, and modeling of simulation for virus transmission. The nanodevice platform with powerful compatibility and programmability presents an elegant example of the combination of the distributed operation of multiple devices and the complicated interdevice communication network, and may become a new generation of intelligent DNA nanosystems.
Assuntos
DNA , Lógica , DNA/químicaRESUMO
The adhesion protein nectin-like molecule 2 (NECL2) is involved in spermatogenesis and participates in the connections between Sertoli cells and germ cells. Necl2 deficiency leads to infertility in male mice. We found that NECL2 is relatively highly expressed on the cell membranes of preleptotene spermatocytes. It is known that preleptotene spermatocytes pass through the blood-testis barrier (BTB) from the base of the seminiferous tubules to the lumen to complete meiosis. We hypothesized that the NECL2 protein on the surfaces of preleptotene spermatocytes has an effect on the BTB when crossing the barrier. Our results showed that Necl2 deficiency caused the levels of proteins in the BTB to be abnormal, such as those of Claudin 3, claudin 11, and Connexin43. NECL2 interacted and colocalized with adhesion proteins forming the BTB, such as Connexin43, Occludin, and N-cadherin. NECL2 regulated BTB dynamics when preleptotene spermatocytes passed through the barrier, and Necl2 deficiency caused BTB damage. Necl2 deletion significantly affected the testicular transcriptome, especially the expression of spermatogenesis-related genes. These results suggest that before meiosis and spermatid development occur, BTB dynamics regulated by NECL2 are necessary for spermatogenesis.
Assuntos
Conexina 43 , Testículo , Animais , Masculino , Camundongos , Barreira Hematotesticular/metabolismo , Caderinas/metabolismo , Conexina 43/metabolismo , Células de Sertoli , Espermatogênese/genética , Testículo/metabolismoRESUMO
A simultaneous magnetic field and temperature sensing scheme based on cascaded microwave photonic filters (MPFs) with high resolution is proposed and experimentally demonstrated. A polarization maintaining fiber bonded with a giant magnetostrictive material acts both as a magnetic field sensing probe and an important unit of a dispersion-induced MPF. A 500 m single mode fiber in a two-tap MPF is used to perform temperature compensation. The power fading frequency of the dispersion-induced MPF and the dip frequency of the two-tap MPF are selected to monitor the magnetic field and temperature changes. When temperature changes, both power fading frequency and dip frequency will change. While only power fading frequency shifts as magnetic field changes. Consequently, dual parameter sensing can be achieved by monitoring the characteristic microwave frequencies of the two MPFs. The temperature cross-sensitivity is well resolved in this way. In the experiment, the microwave frequency changes 5.84â MHz as external magnetic field increases by 1â mT. The corresponded theoretical resolution can reach 0.17 nT, which is only limited by the minimum resolution of vector network analyzer.
RESUMO
An in-situ laser Doppler current probe (LDCP) for the simultaneous measurements of the micro-scale subsurface current speed and the characterizations of micron particles is dedicated in this paper. The LDCP performs as an extension sensor for the state-of-the-art laser Doppler anemometry (LDA). The all-fiber LDCP utilized a compact dual wavelength (491â nm and 532â nm) diode pumped solid state laser as the light source to achieve the simultaneous measurements of the two components of the current speed. Besides its ability for the measurements of the current speed, the LDCP is also capable of obtaining the equivalent spherical size distribution of the suspended particles within small size range. The micro-scale measurement volume formed by two intersecting coherent laser beams makes it possible to accurately estimate the size distribution of the micron suspended particles with high temporal and spatial resolution. With its deployment during the field campaign at Yellow Sea, the LDCP has been experimentally demonstrated as an effective instrument to capture the micro-scale subsurface ocean current speed. The algorithm for retrieving the size distribution of the small suspended particles (2â¼7.5µm) has been developed and validated. The combined LDCP system could be applied to the continuous long-term observations of plankton community structure, ocean water optical parameter over a wide range, and useful to elucidate the processes and interactions of the carbon cycles in the upper ocean.