Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(13): e202218670, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36723229

RESUMO

Photochemical afterglow systems have drawn considerable attention in recent years due to their regulable photophysical properties and charming application potential. However, conventional photochemical afterglow suffered from its unrepeatability due to the consumption of energy cache units as afterglow photons are emitted. Here we report a novel strategy to realize repeatable photochemical afterglow (RPA) through the reversible storage of 1 O2 by 2-pyridones. Near-infrared afterglow with a lifetime over 10 s is achieved, and its initial intensity shows no significant reduction over 50 excitation cycles. A detailed mechanism study was conducted and confirmed the RPA is realized through the singlet oxygen-sensitized fluorescence emission. Furthermore, the generality of this strategy is demonstrated and tunable afterglow lifetimes and colors are achieved by rational design. The developed RPA is further applied for attacker-misleading information encryption, presenting a repeatable-readout.

2.
Nat Commun ; 15(1): 3999, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734733

RESUMO

The indication of information in materials is widely used in our daily life, and optical encoding materials are ideal for information loading due to their easily readable nature and adjustable optical properties. However, most of them could only indicate one type of information, either changing or unchanging due to the mutual interference. Inspired by firefly, we present a non-interfering bipolar information indication system capable of indicating both changing and unchanging information. A photochemical afterglow material is incorporated into the photonic crystal matrix through a high-throughput technique called shear-induced ordering technique, which can efficiently produce large-area photonic crystal films. The indication of changing and unchanging information is enabled by two different utilizations of white light by the afterglow material and photonic crystals, respectively, which overcome the limitations of mutual interference. As a proof of concept, this system is used to indicate the changing photodegradation level of mecobalamin (a photosensitive medicine) and unchanging intrinsic drug information with anti-counterfeiting functionality, which is a promising alternative to instantly ascertain the efficacy of medicine at home where conventional assays are impractical.

3.
Adv Mater ; 35(17): e2211117, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739172

RESUMO

Counterfeiting is a worldwide issue and has long troubled legitimate businesses, while nowadays anti-counterfeiting materials and technology are still insufficient to combat the escalating counterfeit behaviors. Inspired by hindwing structure of Troides magellanus, a new kind of anti-counterfeiting material taking advantage of both physical and chemical structures to display multiple optical states is prepared. The chemical units (luminescent lanthanide) are blended with physical units (monodispersed colloidal particles) and mediating molecules, which are then assembled into a photonic crystal structure at room temperature in less than 10 s through a new assembly technique called molecule-mediated shear-induced assembly technique (MSAT). The as-prepared photonic crystal films feature three unique optical states, each displaying structural, fluorescent, and phosphorescent color under different lighting conditions, which integrates colors from both physical and chemical origins. Furthermore, by incorporating different luminescent materials into different parts of the photonic crystal pattern, a high-level information encryption system is designed to be capable of carrying three distinct types of information. Thanks to this powerful tool of MSAT, it is now possible to assemble different-sized, even irregular non-spherical units with monodispersed spherical units into high-quality photonic crystal films, which provides easy access to incorporating new features into photonic crystal systems.

4.
ACS Appl Mater Interfaces ; 15(24): 29321-29329, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289002

RESUMO

Afterglow luminescence has garnered significant attention due to its excellent optical properties. Currently, most afterglow phenomena are produced by persistent luminescence following cessation of the excitation light. However, it remains a challenge to control the afterglow luminescence process due to rapid photophysical or photochemical changes. Here, we develop a new strategy to control the afterglow luminescence process by introducing pyridones as singlet oxygen (1O2) storage reagents (OSRs), where 1O2 can be stored in covalent bonds at relatively low temperatures and released upon heating. The afterglow luminescence properties, including afterglow intensity, decay rate, and decay process, can be tuned flexibly by regulating temperature or OSR structures. Based on the controllable luminescence properties, we devise a new strategy for information security. We believe that such an excellent luminescent system also holds remarkable potential for applications in many other fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA