Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 3): 134317, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094861

RESUMO

Plant vacuoles, play a crucial role in maintaining cellular stability, adapting to environmental changes, and responding to external pressures. The accurate identification of vacuolar proteins (PVPs) is crucial for understanding the biosynthetic mechanisms of intracellular vacuoles and the adaptive mechanisms of plants. In order to more accurately identify vacuole proteins, this study developed a new predictive model PEL-PVP based on ESM-2. Through this study, the feasibility and effectiveness of using advanced pre-training models and fine-tuning techniques for bioinformatics tasks were demonstrated, providing new methods and ideas for plant vacuolar protein research. In addition, previous datasets for vacuolar proteins were balanced, but imbalance is more closely related to the actual situation. Therefore, this study constructed an imbalanced dataset UB-PVP from the UniProt database,helping the model better adapt to the complexity and uncertainty in real environments, thereby improving the model's generalization ability and practicality. The experimental results show that compared with existing recognition techniques, achieving significant improvements in multiple indicators, with 6.08 %, 13.51 %, 11.9 %, and 5 % improvements in ACC, SP, MCC, and AUC, respectively. The accuracy reaches 94.59 %, significantly higher than the previous best model GraphIdn. This provides an efficient and precise tool for the study of plant vacuole proteins.


Assuntos
Proteínas de Plantas , Vacúolos , Vacúolos/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas
2.
Comput Biol Med ; 171: 108129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342046

RESUMO

DNA N6-methyladenine (6mA) modifications play a pivotal role in the regulation of growth, development, and diseases in organisms. As a significant epigenetic marker, 6mA modifications extensively participate in the intricate regulatory networks of the genome. Hence, gaining a profound understanding of how 6mA is intricately involved in these biological processes is imperative for deciphering the gene regulatory networks within organisms. In this study, we propose PSAC-6mA (Position-self-attention Capsule-6mA), a sequence-location-based self-attention capsule network. The positional layer in the model enables positional relationship extraction and independent parameter setting for each base position, avoiding parameter sharing inherent in convolutional approaches. Simultaneously, the self-attention capsule network enhances dimensionality, capturing correlation information between capsules and achieving exceptional results in feature extraction across multiple spatial dimensions within the model. Experimental results demonstrate the superior performance of PSAC-6mA in recognizing 6mA motifs across various species.


Assuntos
Adenina , Metilação de DNA , DNA/genética , Genoma , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA