RESUMO
The development and optimization of Antibody-Drug Conjugates (ADCs) hinge on enhanced analytical and bioanalytical characterization, particularly in assessing critical quality attributes (CQAs). The ADC's potency is largely determined by the average number of drugs attached to the monoclonal antibody (mAb), known as the drug-to-antibody ratio (DAR). Furthermore, the drug load distribution (DLD) influences the therapeutic window of the ADC, defining the range of dosages effective in treating diseases without causing toxic effects. Among CQAs, DAR and DLD are vital; their control is essential for ensuring manufacturing consistency and product quality. Typically, hydrophobic interaction chromatography (HIC) or reversed-phase liquid chromatography (RPLC) with UV detector have been used to quantitate DAR and DLD in quality control (QC) environment. Recently, Native size-exclusion chromatography-mass spectrometry (nSEC-MS) proves the potential as a platformable quantitative method for characterizing DAR and DLD across various cysteine-linked ADCs in research or early preclinical development. In this work, we established and assessed a streamlined nSEC-MS workflow with a benchtop LC-MS platform, to quantitatively monitor DAR and DLD of different chemotype and drug load level cysteine-linked ADCs. Moreover, to deploy this workflow in QC environment, complete method validation was conducted in three independent laboratories, adhering to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines. The results met the predefined analytical target profile (ATP) and performance criteria, encompassing specificity/selectivity, accuracy, precision, linearity, range, quantification/detection limit, and robustness. Finally, the method validation design offers a reference for other nSEC-MS methods that are potentially used to determine the DAR and DLD on cysteine-linker ADCs. To the best of our knowledge, this study is the first reported systematic validation of the nSEC-MS method for detecting DAR and DLD. The results indicated that the co-validated nSEC-MS workflow is suitable for DAR and DLD routine analysis in ADC quality control, release, and stability testing.
Assuntos
Cromatografia em Gel , Cisteína , Imunoconjugados , Espectrometria de Massas , Imunoconjugados/química , Imunoconjugados/análise , Cisteína/química , Reprodutibilidade dos Testes , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Modelos Lineares , Anticorpos Monoclonais/química , Anticorpos Monoclonais/análise , Limite de Detecção , Humanos , Fluxo de TrabalhoRESUMO
Typical antibody-drug conjugates (ADCs) with valine-alanine linkage, often conjugated with the amino group in payloads, face challenges when interacting with hydroxyl group-containing payloads. Herein, we introduced a transformative Val-Ala-based double self-immolative linker-payload platform, reshaping ADCs by optimizing hydroxyl group-containing payload integration. Utilizing this platform, FDA022-BB05 was successfully conjugated with the hydroxyl group-containing payload DXd using trastuzumab (FDA022) as the monoclonal antibody (mAb). FDA022-BB05 demonstrated enhanced stability, effective cathepsin B sensitivity, reduced cell proliferation, increased bystander killing, and targeted delivery. Notably, acute toxicity evaluations in diverse preclinical models indicated favorable safety profiles and tolerability, with a broad therapeutic index in HER2-positive and -negative xenografts. Overall, these compelling findings support the promising therapeutic potential of FDA022-BB05, emphasizing the significance of diverse linker-payload platform strategies. This ADC is a valuable addition to targeted cancer therapy development, currently advancing through phase I clinical trials.
RESUMO
Periphytic algae are important primary producers in water bodies, which play an important role in maintaining ecological function and water purification. Previous studies have shown that plastic is a good substrate for periphytic algae, and different plastic materials have different effects on the colonization of periphytic algae; however, there are few reports on the effects of plastic color on the growth of periphytic algae. In this study, polycarbonate plastic (PC) of various colors were used as the substrate to study the effects of different colors on the growth and community structure of periphytic algae by measuring the biomass, photosynthetic activity, and community composition. The results showed that the growth of periphytic algae was inhibited by the brown PC plastic, and the contents of chlorophyll a and dry weight in this group were significantly lower than those in other groups. Green PC plastic inhibited the photosynthetic activity of periphytic algae, and the actual photosynthetic efficiency (Yield) of the group was significantly lower than that of the other groups. The influence of PC plastic with different colors on periphytic algae occurred mainly in the early colonization/development stage but was not significant in the late community maturity stage. On day seven of the experiment, the community composition of periphytic algae was significantly different between the transparent PC plastic group and the green PC plastic group. By contrast, on days 25 and 40, there were no significant differences in the community structure of periphytic algae. In the early stage of the experiment, the dominant genus was Pseudoranea (Cyanophyta), and in the middle and mature stages, the dominant genus was Mougeotia (Chlorophyta). In this study, the effects of different colors of polycarbonate plastics on periphytic algae were investigated, which provided new insights for selecting suitable substrates for water pollution treatment by using periphyton biotechnology.
Assuntos
Fotossíntese , Plásticos , Clorofila A , BiomassaRESUMO
Antibody drug conjugates (ADCs) have emerged as a highly promising class of cancer therapeutics, comprising antibodies, effector molecules, and linkers. Among them, DS-8201a with DXd as the effector molecule, has shown remarkable anti-tumor efficacy against solid tumors, sparking a surge of interest in ADCs with camptothecin derivatives as ADC effector molecules. In this study, we introduced and successfully constructed quaternary ammonium ADCs utilizing camptothecin derivatives WL-14 and CPTS-1 for the first time. All four ADCs displayed excellent stability under physiological conditions and in plasma, facilitating their prolonged circulation in vivo. Moreover, the four ADCs, employing Val-Cit or Val-Ala dipeptide linkers effectively achieved complete release of the effector molecules via cathepsin B. Although, the in vitro antitumor activity of these ADCs was comparatively limited, the development of quaternary ammonium ADCs based on novel camptothecin derivatives as effector molecules is still a viable and promising strategy. Significantly, our study provides valuable insights into the crucial role of linker optimization in ADCs design.
Assuntos
Compostos de Amônio , Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Camptotecina , Imunoconjugados/química , Anticorpos/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Linhagem Celular TumoralRESUMO
Periphyton is considered important for removal of organic pollutants from water bodies, but knowledge of the impacts of antibiotics on the community structure and ecological function of waterbodies remains limited. In this study, the effects of oxytetracycline hydrochloride (OTC) on the communities of photoautotrophic epilithon and epipelon and its effect on nitrogen and phosphorus concentrations in the water column were studied in a 12-day mesocosm experiment. The dynamics of nitrogen and phosphorus concentrations in the epipelon and epilithon experiment showed similar patterns. The concentrations of total nitrogen, dissolved total nitrogen, ammonium nitrogen, total phosphorus and dissolved total phosphorus in the water column increased rapidly during the initial days of exposure, after which a downward trend occurred. In the epilithon experiment, we found that the photosynthesis (Fv/Fm) and biomass of epilithon were significantly (P < 0.05) stimulated in the low concentration group. Contrarily, growth and photosynthesis (Fv/Fm) were significantly (P < 0.05) reduced in the medium and high concentration group. We further found that the photosynthetic efficiency of photoautotrophic epilithon was negatively correlated with the concentrations of nitrogen and phosphorus in the water column (P < 0.05). Principal coordinate analysis (PCoA) showed that the communities of epilithic algae in the control group and in the low concentration group were significantly (P < 0.05) different from that of the high concentration group during the initial 4 days. After 8 days' exposure, all groups tended to be similar, indicating that epilithon showed rapid adaptability and/or resilience. Similar results were found for the relative abundance of some epilithic algae. Our findings indicate that the biofilm system has strong tolerance and adaptability to OTC as it recovered fast after an initial suppression, thus showing the important role of periphyton in maintaining the dynamic balance of nutrients with other processes in aquatic ecosystems.
Assuntos
Oxitetraciclina , Perifíton , Poluentes Químicos da Água , Ecossistema , Nitrogênio/análise , Oxitetraciclina/metabolismo , Fósforo/análise , Poluentes Químicos da Água/metabolismoRESUMO
To explore the ability of bloom-forming cyanobacterium Chrysosporum ovalisporum to utilize different kinds of phosphorus compounds in the water column, we examined the growth response of C. ovalisporum in the laboratory by taking dipotassium hydrogen phosphate as the control and set different treatments of phosphorus substrates. The results showed that C. ovalisporum could utilize sodium tripolyphosphate and terasodium pyrophosphate decahydrate, with better utilization of sodium tripolyphosphate. After 15 days, it had the highest biomass and chlorophyll a concentrations under the treatment of sodium tripolyphosphate, with a value of (426.96±47.42) mg·L-1 and (1852.34±116.60) µg·L-1, respectively. Compared with the control, there was no significant difference in biomass of C. ovalisporum under both the (2-aminoethyl)-phosphonic acid and disodium ß-glycerol phosphate pentahydrate treatments. The change characteristics of dissolved inorganic phosphate were related to the alkaline phosphatase activity, indicating that C. ovalisporum was able to utilize these two organophosphorus compounds via enzyme hydrolysis. The concentration of dissolved inorganic phosphate reached 0 mg·L-1 during the whole experiment when the C. ovalisporum were fed with glyphosate. Biomass, specific growth rate, chlorophyll a concentration and photosynthetic activity of algal cells were significantly lower than those of the control, indicating that C. ova-lisporum could not uptake phosphorus compounds in the glyphosate substrate and thus their growth being inhibited. Our results present new insights to understand the diffusion mechanism of C. ovalisporum into different aquatic ecosystems and had theoretical reference value for the prevention and control of new cyanobacterial blooms.
Assuntos
Cianobactérias , Compostos de Fósforo , Clorofila A , Ecossistema , FósforoRESUMO
An anti-CD30 antibody-drug conjugate incorporating the antimitotic agent DM1 and a stable SMCC linker, anti-CD30-MCC-DM1, was generated as a new antitumor drug candidate for CD30-positive hematological malignancies. Here, the in vitro and in vivo pharmacologic activities of anti-CD30-MCC-DM1 (also known as F0002-ADC) were evaluated and compared with ADCETRIS (brentuximab vedotin). Pharmacokinetics (PK) and the safety profiles in cynomolgus monkeys were assessed. Anti-CD30-MCC-DM1 was effective in in vitro cell death assays using CD30-positive lymphoma cell lines. We studied the properties of anti-CD30-MCC-DM1, including binding, internalization, drug release and actions. Unlike ADCETRIS, anti-CD30-MCC-DM1 did not cause a bystander effect in this study. In vivo, anti-CD30-MCC-DM1 was found to be capable of inducing tumor regression in subcutaneous inoculation of Karpas 299 (anaplastic large cell lymphoma), HH (cutaneous T-cell lymphoma) and L428 (Hodgkin's disease) cell models. The half-lives of 4 mg/kg and 12 mg/kg anti-CD30-MCC-DM1 were about 5 days in cynomolgus monkeys, and the tolerated dose was 30 mg/kg in non-human primates, supporting the tolerance of anti-CD30-MCC-DM1 in humans. These results suggest that anti-CD30-MCC-DM1 presents efficacy, safety and PK profiles that support its use as a valuable treatment for CD30-positive hematological malignancies.