Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 52(6): 1446-1462, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31088038

RESUMO

BACKGROUND/AIMS: Rheumatoid arthritis (RA) is characterized by a tumor-like expansion of the synovium and the subsequent destruction of adjacent articular cartilage and bone. Recent studies have shown that phosphatase and tension homolog deleted on chromosome 10 (PTEN) might contribute to the surviva of fibroblast-like synoviocytes (FLSs) and the production of pro-inflammatory cytokines in RA. The purpose of this study was to explore the functions and underlying mechanisms of PTEN in the proliferation and migration of FLSs. METHODS: FLSs were obtained from adjuvant-induced arthritis (AIA) and normal rats. The expression levels of PTEN, c-Myc, cyclin D1, PCNA, and MMP-9 were detected by quantitative-real-time-PCR and western blot assay. A BrdU proliferation assay, cell cycle analysis, and a wound-healing assay were used to study the role of PTEN in FLSs treated with PTEN inhibitor bpv, specific small interfering RNA targeting PTEN (PTEN-RNAi) or a PTEN over-expression vector (PTEN-GV141). Chromatin immunoprecipitation and methylation-special PCR assays were used to study the expression of PTEN mRNA in the presence of DNA methylation. RESULTS: PTEN expression was downregulated in AIA FLSs in comparison to normal rats. Moreover, inhibition of PTEN expression by bpv or PTEN-RNAi could promote the proliferation and migration of FLSs, and increase the expression of c-Myc, cyclin D1, PCNA, and MMP-9 in AIA FLSs, but had no effect on TIMP-1 expression.In addition, transfection of AIA FLSs with PTEN-GV141 reduced their proliferation and migration. Further study indicated that DNA methylation could regulate PTEN expression in AIA. CONCLUSION: Our findings suggest that PTEN might play a pivotal role in the proliferation and migration of FLSs through the activation of the AKT signaling pathway. Additionally, PTEN expression may be regulated by DNA methylation in the pathogenesis of AIA.


Assuntos
Artrite Experimental/metabolismo , Movimento Celular , Proliferação de Células , Fibroblastos/metabolismo , Regulação da Expressão Gênica , PTEN Fosfo-Hidrolase/biossíntese , Sinoviócitos/metabolismo , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Feminino , Fibroblastos/patologia , PTEN Fosfo-Hidrolase/genética , Ratos , Ratos Sprague-Dawley , Sinoviócitos/patologia
2.
Arthritis Res Ther ; 24(1): 35, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101111

RESUMO

Rheumatoid arthritis is a chronic systemic autoimmune disease characterized by synovial hyperplasia, inflammatory cell infiltration, and proliferation of inflammatory tissue (angiogranuloma). The destruction of joints and surrounding tissues eventually causes joint deformities and dysfunction or even loss. The S100 protein family is one of the biggest subtribes in the calcium-binding protein family and has more than 20 members. The overexpression of most S100 proteins in rheumatoid arthritis is closely related to its pathogenesis. This paper reviews the relationship between S100 proteins and the occurrence and development of rheumatoid arthritis. It will provide insights into the development of new clinical diagnostic markers and therapeutic targets for rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Proteínas S100 , Artrite Reumatoide/patologia , Humanos , Proteínas S100/genética , Proteínas S100/metabolismo , Membrana Sinovial/metabolismo
3.
Front Immunol ; 12: 731842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630412

RESUMO

Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by immune cell infiltration, fibroblast-like synovial cell hyperproliferation, and cartilage and bone destruction. To date, numerous studies have demonstrated that immune cells are one of the key targets for the treatment of RA. N6-methyladenosine (m6A) is the most common internal modification to eukaryotic mRNA, which is involved in the splicing, stability, export, and degradation of RNA metabolism. m6A methylated-related genes are divided into writers, erasers, and readers, and they are critical for the regulation of cell life. They play a significant role in various biological processes, such as virus replication and cell differentiation by controlling gene expression. Furthermore, a growing number of studies have indicated that m6A is associated with the occurrence of numerous diseases, such as lung cancer, bladder cancer, gastric cancer, acute myeloid leukemia, and hepatocellular carcinoma. In this review, we summarize the history of m6A research and recent progress on RA research concerning m6A enzymes. The relationship between m6A enzymes, immune cells, and RA suggests that m6A modification offers evidence for the pathogenesis of RA, which will help in the development of new therapies for RA.


Assuntos
Adenosina/análogos & derivados , Artrite Reumatoide/metabolismo , Sistema Imunitário/metabolismo , Articulações/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Autoimunidade , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Articulações/imunologia , Articulações/patologia , Metiltransferases/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/metabolismo , Estabilidade de RNA
4.
Eur J Pharmacol ; 911: 174462, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536366

RESUMO

Liver fibrosis is a persistent pathological repair of chronic liver injury, which is characterized by excessive deposition of collagen-dominated extracellular matrix (ECM). It is well known that hepatic fibrosis can be reversed in the absence of etiology. Studies have shown that long non-coding RNA (Lnc RNA) maternally expressed gene3 (MEG3) has strong effects on the activation of hepatic stellata cells (HSCs). However, the function of MEG3 in the reversal of liver fibrosis has not been studied. In this experiment, we studied the content expression, function, and part of the potential mechanism of MEG3 in reversing liver fibrosis. In in vivo and in vitro models, we found that MEG3 was down-regulated during the formation of liver fibrosis, while it was up-regulated during the reversal of liver fibrosis. Then, it was found that the silencing of MEG3 could gradually restore the activity of the inactivated LX-2 cells, Overexpression of MEG3 can inhibit the activation of LX-2 cells, accelerate the reversal of liver fibrosis. Through catRAPID analysis, it was found that NLR family CARD domain containing 5 (NLRC5) may be a target of MEG3. We found that, after MEG3 silencing, NLRC5 expression was upregulated in LX-2 cells in the reverse phase, while, after MEG3 overexpression, NLRC5 expression was decreased. Further, we verified that MEG3 can target NLRC5 through RNA pull down experiment. Therefore, MEG3 may inhibit the activation of hepatic stellate cells by targeting NLRC5, thus accelerating the reversal of hepatic fibrosis.


Assuntos
Células Estreladas do Fígado , RNA Longo não Codificante
5.
Front Pharmacol ; 12: 700373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305608

RESUMO

Rheumatoid arthritis (RA) is characterized by a tumor-like expansion of the synovium and subsequent destruction of adjacent articular cartilage and bone. In our previous work we showed that phosphatase and tension homolog deleted on chromosome 10 (PTEN) contributes to the activation of fibroblast-like synoviocytes (FLS) in adjuvant-induced arthritis (AIA), but the underlying mechanism is not unknown. In this study, we show that PTEN is downregulated while DNA methyltransferase (DNMT)1 is upregulated in FLS from RA patients and a rat model of AIA. DNA methylation of PTEN was increased by administration of tumor necrosis factor (TNF)-α in FLS of RA patients, as determined by chromatin immunoprecipitation and methylation-specific PCR. Treatment with the methylation inhibitor 5-azacytidine suppressed cytokine and chemokine release and FLS activation in vitro and alleviated paw swelling in vivo. PTEN overexpression reduced inflammation and activation of FLS via protein kinase B (AKT) signaling in RA, and intra-articular injection of PTEN-expressing adenovirus into the knee of AIA rats markedly reduced inflammation and paw swelling. Thus, PTEN methylation promotes the inflammation and activation of FLS in the pathogenesis of RA. These findings provide insight into the molecular basis of articular cartilage destruction in RA, and indicate that therapeutic strategies that prevent PTEN methylation may an effective treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA