Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000298

RESUMO

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.


Assuntos
Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Endorribonucleases/química , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Ribonucleases/metabolismo
2.
PLoS Biol ; 17(3): e3000196, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908491

RESUMO

Differentiation of secretory cells leads to sharp increases in protein synthesis, challenging endoplasmic reticulum (ER) proteostasis. Anticipatory activation of the unfolded protein response (UPR) prepares cells for the onset of secretory function by expanding the ER size and folding capacity. How cells ensure that the repertoire of induced chaperones matches their postdifferentiation folding needs is not well understood. We find that during differentiation of stem-like seam cells, a typical UPR target, the Caenorhabditis elegans immunoglobulin heavy chain-binding protein (BiP) homologue Heat-Shock Protein 4 (HSP-4), is selectively induced in alae-secreting daughter cells but is repressed in hypodermal daughter cells. Surprisingly, this lineage-dependent induction bypasses the requirement for UPR signaling. Instead, its induction in alae-secreting cells is controlled by a specific developmental program, while its repression in the hypodermal-fated cells requires a transcriptional regulator B-Lymphocyte-Induced Maturation Protein 1 (BLMP-1/BLIMP1), involved in differentiation of mammalian secretory cells. The HSP-4 induction is anticipatory and is required for the integrity of secreted alae. Thus, differentiation programs can directly control a broad-specificity chaperone that is normally stress dependent to ensure the integrity of secreted proteins.


Assuntos
Proteínas de Choque Térmico/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Linfócitos B/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética
3.
J Biol Chem ; 290(39): 23875-87, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26245901

RESUMO

Nedd4-family E3 ubiquitin ligases regulate an array of biologic processes. Autoinhibition maintains these catalytic ligases in an inactive state through several mechanisms. However, although some Nedd4 family members are activated by binding to Nedd4 family-interacting proteins (Ndfips), how binding activates E3 function remains unclear. Our data reveal how these two regulatory processes are linked functionally. In the absence of Ndfip1, the Nedd4 family member Itch can bind an E2 but cannot accept ubiquitin onto its catalytic cysteine. This is because Itch is autoinhibited by an intramolecular interaction between its HECT (homologous to the E6-AP carboxy terminus domain) and two central WW domains. Ndfip1 binds these WW domains to release the HECT, allowing trans-thiolation and Itch catalytic activity. This molecular switch also regulates the closely related family member WWP2. Importantly, multiple PY motifs are required for Ndfip1 to activate Itch, functionally distinguishing Ndfips from single PY-containing substrates. These data establish a novel mechanism for control of the function of a subfamily of Nedd4 E3 ligases at the level of E2-E3 trans-thiolation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA